首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathion hydrolases have been previously described for an American isolate of Pseudomonas diminuta and a Philippine isolate of Flavobacterium sp. (ATCC 27551). The gene which encodes the broad-spectrum organophosphate phosphotriesterase in P. diminuta has been shown by other investigators to be located on a 66-kilobase (kb) plasmid. The intact gene (opd, organophosphate-degrading gene) from this degradative plasmid was cloned into M13mp10 and found to express parathion hydrolase under control of the lac promoter in Escherichia coli. In Flavobacterium sp. strain ATCC 27551, a 43-kb plasmid was associated with the production of parathion hydrolase by curing experiments. The M13mp10-cloned fragment of the opd gene from P. diminuta was used to identify a homologous genetic region from Flavobacterium sp. strain ATCC 27551. Southern hybridization experiments demonstrated that a genetic region from the 43-kb Flavobacterium sp. plasmid possessed significant homology to the opd sequence. Similar hybridization did not occur with three other native Flavobacterium sp. plasmids (approximately 23, 27, and 51 kb) present within this strain or with genomic DNA from cured strains. Restriction mapping of various recombinant DNA molecules containing subcloned fragments of both opd plasmids revealed that the restriction maps of the two opd regions were similar, if not identical, for all restriction endonucleases tested thus far. In contrast, the restriction maps of the cloned plasmid sequences outside the opd regions were not similar. Thus, it appears that the two discrete bacterial plasmids from parathion-hydrolyzing soil bacteria possess a common but limited region of sequence homology within potentially nonhomologous plasmid structures.  相似文献   

2.
Parathion hydrolases have been previously described for an American isolate of Pseudomonas diminuta and a Philippine isolate of Flavobacterium sp. (ATCC 27551). The gene which encodes the broad-spectrum organophosphate phosphotriesterase in P. diminuta has been shown by other investigators to be located on a 66-kilobase (kb) plasmid. The intact gene (opd, organophosphate-degrading gene) from this degradative plasmid was cloned into M13mp10 and found to express parathion hydrolase under control of the lac promoter in Escherichia coli. In Flavobacterium sp. strain ATCC 27551, a 43-kb plasmid was associated with the production of parathion hydrolase by curing experiments. The M13mp10-cloned fragment of the opd gene from P. diminuta was used to identify a homologous genetic region from Flavobacterium sp. strain ATCC 27551. Southern hybridization experiments demonstrated that a genetic region from the 43-kb Flavobacterium sp. plasmid possessed significant homology to the opd sequence. Similar hybridization did not occur with three other native Flavobacterium sp. plasmids (approximately 23, 27, and 51 kb) present within this strain or with genomic DNA from cured strains. Restriction mapping of various recombinant DNA molecules containing subcloned fragments of both opd plasmids revealed that the restriction maps of the two opd regions were similar, if not identical, for all restriction endonucleases tested thus far. In contrast, the restriction maps of the cloned plasmid sequences outside the opd regions were not similar. Thus, it appears that the two discrete bacterial plasmids from parathion-hydrolyzing soil bacteria possess a common but limited region of sequence homology within potentially nonhomologous plasmid structures.  相似文献   

3.
Several bacterial strains that can use organophosphate pesticides as a source of carbon have been isolated from soil samples collected from diverse geographical regions. All these organisms synthesize an enzyme called parathion hydrolase, and in each case the enzyme is encoded by a gene (opd) located on a large indigenous plasmid. These plasmids show considerable genetic diversity, but the region containing the opd gene is highly conserved. Two opd plasmids, pPDL2 from Flavobacterium sp. and pCMS1 from Pseudomonas diminuta, are well characterized, and in each of them a region of about 5.1 kb containing the opd gene shows an identical restriction pattern. We now report the complete sequence of the conserved region of plasmid pPDL2. The opd gene is flanked upstream by an insertion sequence, ISFlsp1, that is a member of the IS21 family, and downstream by a Tn3-like element encoding a transposase and a resolvase. Adjacent to opd but transcribed in the opposite direction is an open reading frame (orf243) with the potential to encode an aromatic hydrolase somewhat similar to Pseudomonas putida TodF. We have shown that orf243 encodes a polypeptide of 27 kDa, which plays a role in the degradation of p-nitrophenol and is likely to act in concert with opd in the degradation of parathion. The linkage of opd and orf243, the organization of the genes flanking opd, and the wide geographical distribution of these genes suggest that this DNA sequence may constitute a complex catabolic transposon.  相似文献   

4.
A fosmid library of the 66kb indigenous organophosphate-degrading (opd) plasmid pCMS1 of Brevundimonas diminuta was tagged with mini-transposon EZTn5 , to determine its sequence using transposon-specific primers. The sequence revealed the presence of a number of tra genes suggesting their role in conjugal transfer of pCMS1. Consistent with the presence of the tra genes, the B. diminuta plasmid, pCMS1::tet, generated by replacing the opd gene with opd::tet, served as a donor for transferring pCMS1::tet into recipient strain Pseudomonas putida. The self-transmissibility of the opd-containing plasmid pCMS1 and the existence of identical opd genes on otherwise dissimilar plasmids suggests a probable role of indigenous opd plasmids like pCMS1 in transferring the opd gene among soil bacteria.  相似文献   

5.
6.
The sequence of a 1,693-base-pair plasmid DNA fragment from Flavobacterium sp. strain ATCC 27551 containing the parathion hydrolase gene (opd) was determined. Within this sequence, there is only one open reading frame large enough to encode the 35,000-dalton membrane-associated hydrolase protein purified from Flavobacterium extracts. Amino-terminal sequence analysis of the purified Flavobacterium hydrolase demonstrated that serine is the amino-terminal residue of the hydrolase protein. The amino-terminal serine corresponds to a TCG codon located 87 base pairs downstream of the presumptive ATG initiation codon in the nucleotide sequence. The amino acid composition of the purified protein agrees well with that predicted from the nucleotide sequence, using serine as the amino-terminal residue. These data suggest that the parathion hydrolase protein is processed at its amino terminus in Flavobacterium sp. Construction in Escherichia coli of a lacZ-opd gene fusion in which the first 33 amino-terminal residues of opd were replaced by the first 5 residues of lacZ resulted in the production of an active hydrolase identical in molecular mass to the hydrolase isolated from Flavobacterium sp. E. coli cells containing the lacZ-opd fusion showed higher levels of hydrolase activity than did cells containing the parent plasmid.  相似文献   

7.
Plasmid borne organophosphorus pesticide degrading (opd) gene of Flavobacterium balustinum has been amplified using polymerase chain reaction (PCR) and the resulting PCR product (1.25 Kb) was cloned in pUC18. Further, a detailed restriction map was determined to PCR product and subcloned as overlapping restriction fragments. The nucleotide sequence was determined for all subclones to obtain complete sequence of PCR amplified fragment. The sequence showed 98% similarity to opd genes cloned from other soil bacteria isolated from diversified geographical regions. The protein sequence predicted from the nucleotide sequence was almost identical to parathion hydrolase, a triesterase involved in hydrolysis of triester bond found in variety of op-pesticides. The signal sequence of parathion hydrolase contained recently discovered twin arginine transport (tat) motif. It appears that tat motif plays a critical role in membrane targeting of parathion hydrolase.  相似文献   

8.
Molecular cloning techniques were used to isolate and characterize the DNA including and surrounding the CDC24 and PYK1 genes on the left arm of chromosome I of the yeast Saccharomyces cerevisiae. A plasmid that complemented a temperature-sensitive cdc24 mutation was isolated from a yeast genomic DNA library in a shuttle vector. Plasmids containing pyk1-complementing DNA were obtained from other investigators. Several lines of evidence (including one-step gene replacement experiments) demonstrated that the complementing plasmids contained the bona fide CDC24 and PYK1 genes. These sequences were then used to isolate additional DNA from chromosome I by probing a yeast genomic DNA library in a lambda vector. A total of 28 kilobases (kb) of contiguous DNA surrounding the CDC24 and PYK1 genes was isolated, and a restriction map was determined. Electron microscopy of R-loop-containing DNA and RNA blot hybridization analyses indicated that an 18-kb segment contained at least seven transcribed regions, only three of which corresponded to previously known genes (CDC24, PYK1, and CYC3). Southern blot hybridization experiments suggested that none of the genes in this region was duplicated elsewhere in the yeast genome. The centers of CDC24 and PYK1 were only approximately 7.5 kb apart, although the genetic map distance between them is approximately 13 centimorgans. As previous studies with S. cerevisiae have indicated that 1 centimorgan generally corresponds to approximately 3 kb, the region between CDC24 and PYK1 appears to undergo meiotic recombination at an unusually high frequency.  相似文献   

9.
Gentamicin-resistant Staphylococcus aureus and Staphylococcus epidermidis strains which were isolated from infants with staphylococcal bacteremia were analyzed for the presence of self-transmissible gentamicin-resistance (Gmr) plasmids. Conjugative GMr plasmids of approximately 43.8-63 kilobases (kb) were found in all S. aureus strains. Inter- and intra-species transfer of Gmr plasmids by conjugation was observed from S. aureus to S. aureus and to S. epidermidis recipient strains. However, neither inter- nor intra-species transfer of gentamicin resistance by conjugation was observed with nine out of nine S. epidermidis donor strains which were mated with either S. epidermidis or S. aureus recipient strains. These conjugative Gmr plasmids were unable to comobilize a smaller (15-kb) plasmid present in all but two S. aureus clinical isolates. Many of the conjugative Gmr plasmids also carried genetic determinants for kanamycin, tobramycin, neomycin, and ethidium bromide resistance, and for beta-lactamase synthesis. EcoRI restriction endonuclease digests of the S. aureus Gmr conjugative plasmids revealed three different digestion patterns. Four EcoRI restriction endonuclease digestion fragments of 15, 11.4, 6.3, and 4.6 kb in size were common to all plasmids. These plasmids and conjugative Gmr staphylococcal plasmids from other geographical regions shared restriction digestion fragments of similar molecular weights. DNA hybridization with biotinylated S. aureus plasmid pIZ7814 DNA revealed a high degree of homology among these plasmids. A 50.9-kb plasmid from one of the nonconjugative S. epidermidis clinical isolates showed homology with the probe DNA but lacked a portion of a 6.3-kb fragment which was present in all conjugative plasmids and believed to carry much genetic information for conjugation.  相似文献   

10.
A simplified procedure for the addition of synthetic oligonucleotide adaptors to subclone DNA fragments with incompatible ends is presented. An organophosphate degradation gene on a PstI fragment was cloned into the HindIII site of the fungal vector pH1S. The opd gene specifies parathion hydrolase and was first isolated from a Flavobacterium sp. The gene was present in 12% of the plasmids recovered and was inserted in either direction with similar frequencies: 53% with the opd start codon distal to the single SalI site of pH1S and 47% in the other orientation. All enzymatic steps were carried out in a single microconcentrator eliminating DNA loss through manipulation and transfer. Normally, during adaptor or linker addition, a larger number of oligonucleotides are attached at each end of the insert DNA and must be removed before cloning. The need for enzymatic digestion to remove excess adaptors was avoided. Traditional methods have utilized phenol/chloroform extraction, ethanol precipitation, gel filtration chromatography, spermine precipitation, or preparative gel electrophoresis. Eliminating these steps resulted in a simpler, more reliable procedure.  相似文献   

11.
DNA hybridization with the cloned nodulation region of Rhizobium meliloti as a probe revealed DNA homology with four HindIII fragments, 12.5, 6.8, 5.2, and 0.3 kilobases (kb) in size, of the symbiotic plasmid pRjaUSDA193. Both hybridization and complementation studies suggest that the common nodulation genes nodABC and nodD of R. fredii USDA 193 are present on the 5.2-kb HindIII and 2.8-kb EcoRI fragments, respectively, of the Sym plasmid. Both fragments together could confer nodulation ability on soybeans when present in Sym plasmid-cured (Sym-) and wild-type (Sym+) Rhizobium strains or in a Ti plasmid-cured Agrobacterium tumefaciens strain. Furthermore, the 2.8-kb EcoRI fragment alone was able to form nodulelike structures on Glycine max L. cv. "Peking" (soybean). Microscopic examination of these nodules revealed bacterial invasion of the cells, probably via root hair penetration. Bacterial strains harboring plasmids carrying the 5.2- and 2.8-kb nod fragments elicited root-hair-curling responses on infection. These data suggest that the genes responsible for host range determination and some of the early events of nodulation may be coded for by the 5.2-kb HindIII and 2.8-kb EcoRI fragments.  相似文献   

12.
The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources.  相似文献   

13.
Several bacterial strains that can use organophosphate pesticides as a source of carbon have been isolated from soil samples collected from diverse geographical regions. All these organisms synthesize an enzyme called parathion hydrolase, and in each case the enzyme is encoded by a gene (opd) located on a large indigenous plasmid. These plasmids show considerable genetic diversity, but the region containing the opd gene is highly conserved. Two opd plasmids, pPDL2 from Flavobacterium sp. and pCMS1 from Pseudomonas diminuta, are well characterized, and in each of them a region of about 5.1 kb containing the opd gene shows an identical restriction pattern. We now report the complete sequence of the conserved region of plasmid pPDL2. The opd gene is flanked upstream by an insertion sequence, ISFlsp1, that is a member of the IS21 family, and downstream by a Tn3-like element encoding a transposase and a resolvase. Adjacent to opd but transcribed in the opposite direction is an open reading frame (orf243) with the potential to encode an aromatic hydrolase somewhat similar to Pseudomonas putida TodF. We have shown that orf243 encodes a polypeptide of 27 kDa, which plays a role in the degradation of p-nitrophenol and is likely to act in concert with opd in the degradation of parathion. The linkage of opd and orf243, the organization of the genes flanking opd, and the wide geographical distribution of these genes suggest that this DNA sequence may constitute a complex catabolic transposon.  相似文献   

14.
The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources.  相似文献   

15.
Molecular organization of plasmid R906 (Inc P-1)   总被引:1,自引:0,他引:1  
Genetic and restriction (for enzymes EcoRI, BamHI and HindIII) maps of the relatively broad host range plasmid R906 are constructed. There are two non-essential regions on the R906 DNA which can be deleted and cloned. Non-essential regions confer a resistance to different agents and restriction sites are clustered in these regions. Essential and conjugativity genes are located in two other DNA regions approximately at 0-23 and 29-44 kb of the R906 map. These large regions share a high level of homology with Inc-1 group plasmids R751 and RP4 according to Southern-blot hybridization and heteroduplex analyses. A transposon-like structure is found on the R751 DNA among R751/R906 heteroduplex molecules. This transposon of total length 5.1 kb has 1.4 kb inverted repeats at the ends. Bla genes of R906 and RP4 plasmids do not have homologous sequences. Data evidence that IncP-1 group plasmids irrespective to their original bacterial source and range of coded antibiotic resistance have very similar molecular organization. The role of possible factors which are responsible for the broad host range property of the IncP-1 group plasmids is discussed.  相似文献   

16.
The plasmid content of 14 colicinogenic strains of Escherichia coli has been examined. Four strains contained miniplasmids (1.2-2.0 kb). Small plasmids (4-7 kb) were detected in all the strains specifying group A colicins (colicins A, E1, E2, E3 and K; group I plasmids). Larger plasmids (55-130 kb) were detected in seven out of nine strains specifying group B colicins (colicins B, H, Ia, Ib, M, V and S1; group II plasmids). DNA-DNA hybridization with group II plasmids showed a wide variation in the degree of DNA sequence homology among its members. In contrast little (if any) DNA sequence homology was detected with the group I plasmids when the same group II plasmid DNAs were used as hybridization probes. The results of DNA-DNA hybridization studies with the two small group II plasmids (pcolG-CA46 and pcolD-CA23) suggested that these plasmids are equivalent to deleted forms of larger group II plasmids. Our hybridization data thus support the division of colicin plasmids into the two groups (I and II) that have been previously defined from genetic and physiological studies.  相似文献   

17.
Distribution of plasmid molecules to the two daughter cells at cell division is of major importance for their stable inheritance. Several mechanisms that control equipartitioning of low-copy-number plasmids have been described in molecular terms. However, no homologous or analogous systems have been identified for intermediate or high-copy-number plasmids, including rolling circle replicating (RCR) plasmids. It has been suggested that distribution of such plasmids at cell division relies solely on random segregation. Plasmid pVT736-1 is a 2 kb RCR plasmid that was isolated from the Gram-negative capnophilic coccobacillus Actinobacillus actinomycetemcomitans . The plasmid contains a DNA region of approximately 0.8 kb that is associated with its segregational stability. An operon that consists of two genes ( orf3 and orf2 ) is followed by a putative cis -acting site that contains an integration host factor (IHF) binding site, flanked by several repeats. Mutations in orf 2 resulted in plasmid instability. In addition, this DNA region was able to stabilize partially a heterologous replicon, p15A. Homologues or analogues of the pVT736-1 stabilization system have been detected on numerous plasmid and bacterial genomes.  相似文献   

18.
Evaluation of 9 wild-type K99 positive strains of Escherichia coli showed that each had a plasmid of approximately 87.8 kb that hybridized with two DNA probes specific for K99 genes. The K99 reference plasmid from E. coli also is 87.8 kb. Each of these strains had a conserved 7.15-kb BamHI fragment that also hybridized to these probes. Several K99 negative mutants and three 3P- strains also contained K99 plasmids as well as the 7.15-kb BamHI fragment. These results suggest that there is a conservation in size of the K99 plasmids of diverse strains.  相似文献   

19.
According to blotting hybridization and heteroduplex analysis, plasmids R751, R906 and RP4 of Inc Pi group have continuous regions of homology. These homologous regions were mapped on the R751 and RP4-derived pRP401 deletion mutant DNAs. The plasmid pRP401 (m.w. 21.9 kg) retains the broad host range property and has two regions of intensive homology with other Inc P-1 plasmid DNAs. These regions are localized at 8.2-12.0 kb and 13.9-21.9 kb of the physical map of pRP401 plasmid. Homologous regions of pRP401 DNA include at least the replication genes (oriV, trfA, trfB) as well as genes kilB, korA, korB and probably kilC. The data strongly point out that the broad host range plasmids have the same principle of structural and functional organization.  相似文献   

20.
Genetic and physical analyses were used to characterize the Bacteroides ovatus R plasmid pBI136. Results from restriction endonuclease cleavage studies were used to construct a physical map of the plasmid for the enzymes EcoRI, BamHI, ClaI, XbaI, SalI, and SmaI. Based on the sizes of restriction fragments generated in these studies, the plasmid was estimated to be 80.6 kilobase pairs (kb). A 7.2-kb region of the plasmid required for resistance to lincosamide and macrolide (LM) antibiotics was mapped by analysis of spontaneously occurring LM-sensitive deletion derivatives. Hybridization studies showed that this region and an adjoining 2.9-kb EcoRI fragment were responsible for the previously reported homology among Bacteroides plasmids pBF4, pBFTM10, and pBI136. Within this region of homology, 0.5 kb was attributed to a directly repeated sequence thought to bound the LM resistance determinant on pBF4 and pBFTM10. Two pBI136 EcoRI fragments spanning the putative LM resistance region were cloned in Escherichia coli, and heteroduplex analysis of these recombinant plasmids revealed the presence of a 1.2-kb directly repeated sequence. These results suggested that the pBI136 LM resistance determinant resides on an 8.4-kb segment of DNA containing 6.0 kb of intervening DNA sequences bounded by a 1.2-kb directly repeated sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号