首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
3.
Integration of retroviral cDNA involves coupled joining of the two ends of the viral genome at precisely spaced positions in the host cell DNA. Correct coupled joining is essential for viral replication, as shown, for example, by the finding that viral mutants defective in coupled joining are defective in integration and replication. To date, reactions with purified human immunodeficiency virus type 1 (HIV-1) integrase protein in vitro have supported mainly uncoupled joining of single cDNA ends. We have analyzed an activity stimulating coupled joining present in HIV-1 virions, which led to the finding that the HIV-1 nucleocapsid (NC) protein can stimulate coupled joining more than 1,000-fold under some conditions. The requirements for stimulating coupled joining were investigated in assays with mutant NC proteins, revealing that mutations in the zinc finger domains can influence stimulation of integration. These findings (i) provide a means for assembling more authentic integrase complexes for mechanistic studies, (ii) reveal a new activity of NC protein in vitro, (iii) indicate a possible role for NC in vivo, and (iv) provide a possible method for identifying a new class of inhibitors that disrupt coupled joining.  相似文献   

4.
5.
The zinc fingers of retroviral gag nucleocapsid proteins (NC) are required for the specific packaging of the dimeric RNA genome into virions. In vitro, NC proteins activate both dimerization of viral RNA and annealing of the replication primer tRNA onto viral RNA, two reactions necessary for the production of infectious virions. In this study the role of the zinc finger of Moloney murine leukemia virus (MoMuLV) NCp10 in RNA binding and annealing activities was investigated through modification or replacement of residues involved in zinc coordination. These alterations did not affect the ability of NCp10 to bind RNA and promote RNA annealing in vitro, despite a complete loss of zinc affinity. However mutation of two conserved lysine residues adjacent to the finger motif reduced both RNA binding and annealing activities of NCp10. These findings suggest that the complexed NC zinc finger is not directly involved in RNA-protein interactions but more probably in a zinc dependent conformation of NC protein modulating viral protein-protein interactions, essential to the process of viral RNA selection and virion assembly. Then the NC zinc finger may cooperate to select the viral RNA genome to be packaged into virions.  相似文献   

6.
The primate immunodeficiency virus Vif proteins are essential for replication in appropriate cultured cell systems and, presumably, for the establishment of productive infections in vivo. We describe experiments that define patterns of complementation between human and simian immunodeficiency virus (HIV and SIV) Vif proteins and address the determinants that underlie functional specificity. Using human cells as virus producers, it was found that the HIV-1 Vif protein could modulate the infectivity of HIV-1 itself, HIV-2 and SIV isolated from African green monkeys (SIVAGM). In contrast, the Vif proteins of SIVAGM and SIV isolated from Sykes' monkeys (SIVSYK) were inactive for all HIV and SIV substrates in human cells even though, at least for the SIVAGM protein, robust activity could be demonstrated in cognate African green monkey cells. These observations suggest that species-specific interactions between Vif and virus-producing cells, as opposed to between Vif and virus components, may govern the functional consequences of Vif expression in terms of inducing virion infectivity. The finding that the replication of murine leukemia virus could also be stimulated by HIV-1 Vif expression in human cells further supported this notion. We speculate that species restrictions to Vif function may have contributed to primate immunodeficiency virus zoonosis.  相似文献   

7.
8.
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC’s NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC’s aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity.  相似文献   

9.
10.
11.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

12.
13.
All retroviral nucleocapsid (NC) proteins, except those of spumaretroviruses, contain one or two copies of the conserved sequence motif C-X2-C-X4-H-X4-C. The conserved cysteine and histidine residues coordinate a zinc ion in each such motif. Rice et al. (W. G. Rice, J. G. Supko, L. Malspeis, R. W. Buckheit, Jr., D. Clanton, M. Bu, L. Graham, C. A. Schaeffer, J. A. Turpin, J. Domagala, R. Gogliotti, J. P. Bader, S. M. Halliday, L. Coren, R. C. Sowder II, L. 0. Arthur, and L. E. Henderson, Science 270:1194-1197, 1995) have described a series of compounds which inactivate human immunodeficiency virus type 1 (HIV-1) particles and oxidize the cysteine thiolates in the NC zinc finger. We have characterized the effects of three such compounds on Moloney murine leukemia virus (MuLV). We find that, as with HIV-1, the compounds inactivate cell-free MuLV particles and induce disulfide cross-linking of NC in these particles. The killed MuLV particles were found to be incapable of synthesizing full-length viral DNA upon infection of a new host cell. When MuLV particles are synthesized in the presence of one of these compounds, the normal maturational cleavage of the Gag polyprotein does not occur. The compounds have no effect on the infectivity of human foamy virus, a spumaretrovirus lacking zinc fingers in its NC protein. The resistance of foamy virus supports the hypothesis that the zinc fingers are the targets for inactivation of MuLV and HIV- I by the compounds. The absolute conservation of the zinc finger motif among oncoretroviruses and lentiviruses and the lethality of all known mutations altering the zinc-binding residues suggest that only the normal, wild-type structure can efficiently perform all of its functions. This possibility would make the zinc finger an ideal target for antiretroviral agents.  相似文献   

14.
15.
16.
17.
18.
Gag proteins of human immunodeficiency virus type 1 (HIV-1) play a pivotal role in the budding of the virion, in which the zinc finger motifs of the gag proteins recognize the packaging signal of genomic RNA. Nucleolin, an RNA-binding protein, is identified as a cellular protein that binds to murine leukemia virus (MuLV) gag proteins and regulates the viral budding, suggesting that HIV-1 gag proteins, the packaging signal, psi and nucleolin affect the budding of HIV-1. Here we report that nucleolin enhances the release of HIV-1 virions which contain psi. Furthermore, nucleolin and gag proteins form a complex incorporated into virions, and nucleolin promotes the infectivity of HIV-1. Our results suggest that an empty particle which contains neither nucleolin nor the genomic RNA is eliminated during the budding process, and this mechanism is beneficial for escape from the host immune response against HIV-1.  相似文献   

19.
A simian immunodeficiency virus (SIV)(Mne) DNA clone was constructed that produces viruses containing a four amino acid deletion in the second zinc finger of the nucleocapsid (NC) domain of the Gag polyprotein. Viruses produced from this clone, although non-infectious both in vitro and in vivo, complete a majority of the steps in a single retroviral infection cycle. Eight pig-tailed macaques (Macaca nemestrina) were inoculated intramuscularly and subcutaneously three times over the course of 24 weeks with the NC mutant expressing DNA. These macaques, and four controls, were then challenged mucosally (intrarectally) with the homologous virus (SIV Mne CL E11S) and monitored for evidence of infection and clinical disease. Prior to challenge, a measurable humoral immune response was noted in four of eight immunized macaques. After challenge, all 12 macaques became infected, although four immunized animals greatly restricted their viral replication, and one immunized animal that controlled replication remains antibody negative. No disease has been evidence during the 46-week period of monitoring after challenge.  相似文献   

20.
Despite the effectiveness of currently available human immunodeficiency virus type 1 (HIV-1) therapies, a continuing need exists for new drugs to treat HIV-1 infection. We investigated the mechanism by which 3-O-[3',3'-dimethylsuccinyl]-betulinic acid (DSB) inhibits HIV-1 replication. DSB functions at a late stage of the virus life cycle but does not inhibit the HIV-1 protease in vitro or interfere with virus assembly or release. DSB specifically delays the cleavage of Gag between the capsid (CA) and p2, resulting in delayed formation of the mature viral core and reduced HIV-1 infectivity. Replication of simian immunodeficiency virus (SIV) was resistant to DSB; however, a chimeric SIV carrying CA-p2 sequences from HIV-1 was inhibited by the drug, indicating that susceptibility to DSB maps to the CA-p2 region of the HIV-1 Gag protein. A single point mutation at the CA-p2 cleavage site of HIV-1 conferred strong resistance to DSB, confirming the target of the drug. HIV-1 strains that are resistant to a variety of protease inhibitors were sensitive to DSB. These findings indicate that DSB specifically protects the CA-p2 cleavage site from processing by the viral protease during virion maturation, thereby revealing a novel mechanism for pharmacologic inhibition of HIV-1 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号