首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST), and glutamate transporter-1 (GLT-1). Mercuric chloride (HgCl2) is a highly toxic compound that inhibits glutamate uptake in astrocytes, resulting in excessive extracellular glutamate accumulation, leading to excitotoxicity and neuronal cell death. The mechanisms associated with the inhibitory effects of HgCl2 on glutamate uptake are unknown. This study examines the effects of HgCl2 on the transport of 3H-d-aspartate, a nonmetabolizable glutamate analog, using Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2), as a model system. Additionally, studies were undertaken to determine the effects of HgCl2 on mRNA and protein levels of these transporters. The results indicate that (1) HgCl2 leads to significant (p<0.001) inhibition of glutamate uptake via both transporters, but is a more potent inhibitor of glutamate transport via GLAST and (2) the effect of HgCl2 on inhibition of glutamate uptake in transfected CHO cells is not associated with changes in transporter protein levels despite a significant decrease in mRNA expression; thus, (3) HgCl2 inhibition is most likely related to its direct binding to the functional thiol groups of the transporters and interference with their uptake function.  相似文献   

2.
Thimerosal, also known as thimersal, Merthrolate, or sodiumethyl-mercurithiosalicylate, is an organic mercurial compound that is used in a variety of commercial as well as biomedical applications. As a preservative, it is used in a number of vaccines and pharmaceutical products. Its active ingredient is ethylmercury. Both inorganic and organic mercurials are known to interfere with glutamate homeostasis. Brain glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/ aspartats transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of thimerosal on glutamate homeostasis have yet to be determined. As a first step in this process, we examined the effects of thimerosal on the transport of [3H]-D-aspartate, a nonmetabolizable glutamate analog, in Chinese hamster ovary (CHO) cells transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2). Additionally, studies were undertaken to determine the effects of thimerosal on mRNA and protein levels of these transporters. The results indicate that thimerosal treatment caused significant but selective changes in both glutamate transporter mRNA and protein expression in CHO cells. Thimerosal-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was more pronounced in the GLT-1-transfected cells compared with the GLAST-transfected cells. These studies suggest that thimerosal accumulation in the central nervous system might contribute to dysregulation of glutamate homeostasis.  相似文献   

3.
In order to maintain normal functioning of the brain, glutamate homeostasis and extracellular levels of excitotoxic amino acids (EAA) must be tightly controlled. This is accomplished, in large measure, by the astroglial high-affinity Na+-dependent EAA transporters glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). Methylmercury (MeHg) is a potent neurotoxicant. Astrocytes are known targets for MeHg toxicity, representing a site for mercury localization. Mehg is known to cause astrocytic swelling, EAA release, and uptake inhibition in astrocytes, leading to increased extracellular glutamate levels and ensuing neuronal excitotoxicity and degeneration. However, the mechanisms and contribution of specific glutamate transporters to MeHg-induced glutamate dyshomeostasis remain unknown. Accordingly, the present study was carried out to investigate the effects of MeHg on the transport of [d-2, 3-3H]-d-aspartate, a nonmetabolizable glutamate analog in Chinese hamster ovary cells (CHO) transfected with the glutamate transporter subtypes GLAST or GLT-1. Additional studies examined the effects of MeHg on mRNA and protein levels of these transporters. Our results indicate the following (1) MeHg selectively affects glutamate transporter mRNA expression. MeHg treatment (6 h) led to no discernible changes in GLAST mRNA expression; however, GLT-1 mRNA expression significantly (p<0.001) increased following treatments with 5 or 10 μM MeHg. (2) Selective changes in the expression of glutamate transporter protein levels were also noted. GLAST transporter protein levels significantly (p<0.001, both at 5 and 10 μM MeHg) increased and GLT-1 transporter protein levels significantly (p<0.001) decreased followign MeHg exposure (5 μM). (3) MeHg exposure led to significant inhibition (p<0.05) of glutamate uptake by GLAST (both 5 and 10 μM MeHg), whereas GLT-1 transporter activity was significantly (p<0.01) increased following exposure to 5 and 10 μM MeHg. These studies suggest that MeHg contributes to the dysregulation of glutamate homeostasis and that its effects are distinct for GLAST and GLT-1.  相似文献   

4.
The acidic amino acids, glutamate and aspartate, are the predominant excitatory neurotransmitters in the mammalian CNS. Under many pathologic conditions, these excitatory amino acids (EAAs) accumulate in the extracellular fluid in CNS and the resultant excessive activation of EAA receptors contributes to brain injury through a process known as 'excitotoxicity'. Unlike many other neurotransmitters, there is no evidence for extracellular metabolism of EAAs, rather, they are cleared by Na+-dependent transport mechanisms. Therefore, this transport process is important for ensuring crisp synaptic signaling as well as limiting the excitotoxic potential of EAAs. With the cloning of five distinct EAA transporters, a variety of tools were developed to characterize individual transporter subtypes, including specific antibodies, expression systems, and probes to delete/knock-down expression of each subtype. These tools are beginning to provide fundamental information that has the potential to impact our understanding of EAA physiology and pathophysiology. For example, biophysical studies of the cloned transporters have led to the observation that some subtypes function as ligand-gated ion channels as well as transporters. With these reagents, it has also been possible to explore the relative contributions of each transporter to the clearance of extracellular EAAs and to begin to examine the regulation of specific transporter subtypes. In this review, an overview of the properties of the transporter subtypes will be presented. The evidence which suggests that the transporter, GLT1/EAAT2, may be sufficient to explain a large percentage of forebrain transport will be critically reviewed. Finally, the studies of regulation of GLT-1 in vitro and in vivo will be described.  相似文献   

5.
The acidic amino acids, glutamate and aspartate, are the predominant excitatory neurotransmitters in the mammalian CNS. Under many pathologic conditions, these excitatory amino acids (EAAs) accumulate in the extracellular fluid in CNS and the resultant excessive activation of EAA receptors contributes to brain injury through a process known as excitotoxicity. Unlike many other neurotransmitters, there is no evidence for extracellular metabolism of EAAs, rather, they are cleared by Na+-dependent transport mechanisms. Therefore, this transport process is important for ensuring crisp synaptic signaling as well as limiting the excitotoxic potential of EAAs. With the cloning of five distinct EAA transporters, a variety of tools were developed to characterize individual transporter subtypes, including specific antibodies, expression systems, and probes to delete/knock-down expression of each subtype. These tools are beginning to provide fundamental information that has the potential to impact our understanding of EAA physiology and pathophysiology. For example, biophysical studies of the cloned transporters have led to the observation that some subtypes function as ligand-gated ion channels as well as transporters. With these reagents, it has also been possible to explore the relative contributions of each transporter to the clearance of extracellular EAAs and to begin to examine the regulation of specific transporter subtypes. In this review, an overview of the properties of the transporter subtypes will be presented. The evidence which suggests that the transporter, GLT1/EAAT2, may be sufficient to explain a large percentage of forebrain transport will be critically reviewed. Finally, the studies of regulation of GLT-1 in vitro and in vivo will be described.  相似文献   

6.
7.
The GLT-1 and GLAST astroglial transporters are the glutamate transporters mainly involved in maintaining physiological extracellular glutamate concentrations. Defects in neurotransmitter glutamate transport may represent an important component of glutamate-induced neurodegenerative disorders (such as amyotrophic lateral sclerosis) and CNS insults (ischemia and epilepsy). We characterized the protein expression of GLT-1 and GLAST in primary astrocyte-neuron cocultures derived from rat hippocampal tissues during neuron differentiation/maturation. GLT-1 and GLAST are expressed by morphologically distinct glial fibrillary acidic protein-positive astrocytes, and their expression correlates with the status of neuron differentiation/maturation and activity. Up-regulation of the transporters paralleled the content of the synaptophysin synaptic vesicle marker p38, and down-regulation was a consequence of glutamate-induced neuronal death or the reduction of synaptic activity. Finally, soluble factors in neuronal-conditioned media prevented the down-regulation of the GLT-1 and GLAST proteins. Although other mechanisms may participate in regulating GLT-1 and GLAST in the CNS, our data indicate that soluble factors dependent on neuronal activity play a major regulating role in hippocampal cocultures.  相似文献   

8.
9.
真核生物高亲和力谷氨酸转运体(excitatory amino acid transporters,EAATs)分为GLAST(EAAT1)、GLT-1(EAAT2)、EAAC1(EAAT3)、EAAT4和EAAT5等5个亚型.高亲和力谷氨酸转运体结构学的研究,揭示了谷氨酸转运体的跨膜拓扑结构、真核和原核生物EAATs结构的差异,以及在底物转运过程中的一些底物和协同转运离子的结合位点.其功能学的研究发现,EAATs在参与突触的传递,避免兴奋性氨基酸的毒性效应中发挥重要作用,同时也参与了对学习、记忆以及运动行为的调控.结合我们既往的工作,就近几年EAATs的结构和功能研究做一综述.  相似文献   

10.
Chronic exposure to excessive manganese (Mn) can lead to manganism, a type of neurotoxicity accomplished with extracellular glutamate (Glu) accumulation. To investigate this accumulation, this study focused on the role of astrocyte glutamate transporters (GluTs) and glutamine synthetase (GS), which have roles in Glu transport and metabolism, respectively. And the possible protective effects of riluzole (a glutamatergic modulator) were studied in relation to Mn exposure. At first, the astrocytes were exposed to 0, 125, 250, and 500 μM MnCl(2) for 24 h, and 100 μM riluzole was pretreated to astrocytes for 6 h before 500 μM MnCl(2) exposure. Then, [(3)H]-glutamate uptake was measured by liquid scintillation counting; Na(+)-K(+) ATPase and GS activities were determined by a colorimetric method; glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), and GS mRNA expression were determined by RT-PCR and protein levels were measured by western blotting. The results showed that Mn inhibited Glu uptake, Na(+)-K(+) ATPase and GS activities, GLAST, GLT-1, and GS mRNA, and protein in a concentration-dependent manner. And they were significantly higher for astrocytes pretreated with 100 μM riluzole than the group exposed to 500 μM MnCl(2). The results suggested that Mn disrupted Glu transport and metabolism by inhibiting GluTs and GS. Riluzole activated protective effects on enhancing GluTs and GS to reverse Glu accumulation. In conclusion, Mn exposure results in the disruption of GLAST, GLT-1, and GS expression and function. Furthermore, riluzole attenuates this Mn toxicity.  相似文献   

11.
Abstract: Excess activation of NMDA receptors is felt to participate in secondary neuronal damage after traumatic brain injury (TBI). Increased extracellular glutamate is active in this process and may result from either increased release or decreased reuptake. The two high-affinity sodium-dependent glial transporters [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST)] mediate the bulk of glutamate transport. We studied the protein levels of GLT-1 and GLAST in the brains of rats after controlled cortical impact-induced TBI. With use of subtype-specific antibodies, GLT-1 and GLAST proteins were quantitated by immunoblotting in the ipsilateral and contralateral cortex at 2, 6, 24, 72, and 168 h after the injury. Sham-operated rats served as control. TBI resulted in a significant decrease in GLT-1 (by 20–45%; p < 0.05) and GLAST (by 30–50%; p < 0.05) protein levels between 6 and 72 h after the injury. d -[3H]Aspartate binding also decreased significantly (by 30–50%; p < 0.05) between 6 and 72 h after the injury. Decreased glial glutamate transporter function may contribute to the increased extracellular glutamate that may mediate the excitotoxic neuronal damage after TBI. This is a first report showing altered levels of glutamate transporter proteins after TBI.  相似文献   

12.
Exposure of isolated retinas to 30 microM D-aspartate, which is a substrate for all high affinity glutamate transporters, for 30 min, resulted in the accumulation of such D-aspartate into Müller glial cells but not glutamatergic neurons as evinced by immunocytochemistry for D-aspartate. Further incubation of such loaded retinas in physiological media, in the absence of D-aspartate, resulted in the slow release of accumulated D-aspartate from the Müller cells and its accumulation into populations of photoreceptors and bipolar cells. This result indicates that after initial transport into Müller cells, reversal of direction of transport of D-aspartate, and thus by inference glutamate, by GLAST, readily occurs. D-aspartate released by Müller cells was strongly accumulated into cone photoreceptors which are known to express GLT-1, and into rod photoreceptors which we demonstrate here to express the retina specific glutamate transporter EAAT5 (excitatory amino transporter 5). Populations of glutamatergic bipolar cells, which express GLT-1 also exhibited avid uptake of D-aspartate. We conclude that the Müller cell glutamate transporter GLAST is responsible for most of the initial glutamate clearance in the retina after its release from neurones. However, some glutamate is also returned from Müller cells, to neurons expressing GLT-1 and EAAT5, albeit at a slow rate. These data suggest that the role of neuronal glutamate transporters in the retina may be to facilitate a slow process of recycling glutamate back from Müller cells to neurons after its initial clearance from perisynaptic regions by GLAST.  相似文献   

13.
The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.  相似文献   

14.
In the mammalian retina, glutamate uptake is mediated by members of a family of glutamate transporters known as “excitatory amino acid transporters (EAATs).” Here we cloned and functionally characterized two retinal EAATs from mouse, the GLT-1/EAAT2 splice variant GLT-1c, and EAAT5. EAATs are glutamate transporters and anion-selective ion channels, and we used heterologous expression in mammalian cells, patch-clamp recordings and noise analysis to study and compare glutamate transport and anion channel properties of both EAAT isoforms. We found GLT-1c to be an effective glutamate transporter with high affinity for Na+ and glutamate that resembles original GLT-1/EAAT2 in all tested functional aspects. EAAT5 exhibits glutamate transport rates too low to be accurately measured in our experimental system, with significantly lower affinities for Na+ and glutamate than GLT-1c. Non-stationary noise analysis demonstrated that GLT-1c and EAAT5 also differ in single-channel current amplitudes of associated anion channels. Unitary current amplitudes of EAAT5 anion channels turned out to be approximately twice as high as single-channel amplitudes of GLT-1c. Moreover, at negative potentials open probabilities of EAAT5 anion channels were much larger than for GLT-1c. Our data illustrate unique functional properties of EAAT5, being a low-affinity and low-capacity glutamate transport system, with an anion channel optimized for anion conduction in the negative voltage range.  相似文献   

15.
16.
17.
18.
Although earlier studies on thiamine deficiency have reported increases in extracellular glutamate concentration in the thalamus, a vulnerable region of the brain in this disorder, the mechanism by which this occurs has remained unresolved. Treatment with pyrithiamine, a central thiamine antagonist, resulted in a 71 and 55% decrease in protein levels of the astrocyte glutamate transporters GLT-1 and GLAST, respectively, by immunoblotting in the medial thalamus of day 14 symptomatic rats at loss of righting reflexes. These changes occurred prior to the onset of convulsions and pannecrosis. Loss of both GLT-1 and GLAST transporter sites was also confirmed in this region of the thalamus at the symptomatic stage using immunohistochemical methods. In contrast, no change in either transporter protein was detected in the non-vulnerable frontal parietal cortex. These effects are selective; protein levels of the astrocyte GABA transporter GAT-3 were unaffected in the medial thalamus. In addition, astrocyte-specific glial fibrillary acidic protein (GFAP) content was unchanged in this brain region, suggesting that astrocytes are spared in this disorder. Loss of GLT-1 or GLAST protein was not observed on day 12 of treatment, indicating that down-regulation of these transporters occurs within 48 h prior to loss of righting reflexes. Finally, GLT-1 content was positively correlated with levels of the neurofilament protein alpha-internexin, suggesting that early neuronal drop-out may contribute to the down-regulation of this glutamate transporter and subsequent pannecrosis. A selective, focal loss of GLT-1 and GLAST transporter proteins provides a rational explanation for the increase in interstitial glutamate levels, and may play a major role in the selective vulnerability of thalamic structures to thiamine deficiency-induced cell death.  相似文献   

19.
Excitatory amino acid transporters (EAATs) are membrane-bound proteins localized in glial and neuronal cells which transport glutamate (Glu) in a process essential for terminating its action and protecting neurons from excitotoxic damage. Since Pb-induced neurotoxicity has a glutamatergic component and astrocytes serve as a cellular Pb deposition site, it was of interest to investigate the response of main glutamate transporters to short-term lead exposure in the adult rat brain (25mg/kg b.w. of lead acetate, i.p. for 3 days). We examined the expression of mRNA and protein of GLAST, GLT-1 and EAAC1 in homogenates obtained from cerebellum, hippocampus and forebrain. Molecular evidence is provided which indicates that, of the two glial transporters, GLT-1 is more susceptible than GLAST to the neurotoxic effect arising from Pb. RT-PCR analysis revealed highly decreased expression of GLT-1 mRNA in forebrain and hippocampus. In contrast, GLAST was overexpressed in forebrain and in cerebellum. In the case of EAAC1, the enhanced expression of mRNA and protein of transporter was observed only in forebrain. The results demonstrate regional differences in the expression of glutamate transporters after short-term exposure to Pb. In forebrain, downregulation of GLT-1 is compensated by enhanced expression of GLAST, while in hippocampus, the expression of both is lowered. This observation suggests that under conditions of Pb toxicity in adult rat brain, the hippocampus is most vulnerable to the excitotoxic cell damage arising from impaired clearance of the released glutamate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号