首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The transport of 2-oxoisocaproate into isolated hepatocytes and liver mitochondria of rat was studied using [U-14C]2-oxoisocaproate and the silicone oil filtration procedure. 2-Oxoisocaproate uptake by hepatocytes was composed of: rapid adsorption, unmediated diffusion and carrier-mediated transport. The carrier-mediated transport was strongly inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid and p-chloromercuribenzoate, was less sensitive to alpha-cyano-4-hydroxycinnamate and insensitive to p-chloromercuriphenylsulphonate. Other 2-oxo acids: pyruvate, 2-oxoisovalerate and 2-oxo-3-methylvalerate, were also inhibitory. The kinetic parameters of the carrier-mediated transport were Km 30.6 mM and Vmax 23.4 nmol/min per mg wet wt, at 37 degrees C. It is concluded that at its low, physiological, concentration, 2-oxoisocaproate penetrates the hepatocyte membrane mainly by unmediated diffusion. The uptake of 2-oxoisocaproate by isolated liver mitochondria was partly inhibited by alpha-cyano-4-hydroxycinnamate, the inhibitor of mitochondrial monocarboxylate carrier. The remaining uptake was linearly dependent on 2-oxoisocaproate concentration and represented unmediated diffusion. The carrier-mediated transport exhibited the following kinetic parameters: Km 0.47 mM, Vmax 1.0 nmol/min per mg protein at 6 degrees C; and Km 0.075 mM and Vmax about 8 nmol/min per mg protein at 37 degrees C.  相似文献   

2.
1. Studies on the kinetics of pyruvate transport into mitochondria by an 'inhibitor-stop' technique were hampered by the decarboxylation of pyruvate by mitochondria even in the presence of rotenone. Decarboxylation was minimal at 6 degrees C. At this temperature the Km for pyruvate was 0.15 mM and Vmax. was 0.54nmol/min per mg of protein; alpha-cyano-4-hydroxycinnamate was found to be a non-competitive inhibitor, Ki 6.3 muM, and phenyl-pyruvate a competitive inhibitor, Ki 1.8 mM. 2. At 100 muM concentration, alpha-cyano-4-hydroxycinnamate rapidly and almost totally inhibited O2 uptake by rat heart mitochondria oxidizing pyruvate. Inhibition could be detected at concentrations of inhibitor as low as 1 muM although inhibition took time to develop at this concentration. Inhibition could be reversed by diluting out the inhibitor. 3. Various analogues of alpha-cyano-4-hydroxycinnamate were tested on rat liver and heart mitochondria. The important structural features appeared to be the alpha-cyanopropenoate group and the hydrophobic aromatic side chain. Alpha-Cyanocinnamate, alpha-cyano-5-phenyl-2,4-pentadienoate and compound UK 5099 [alpha-cyano-beta-(2-phenylindol-3-yl)acrylate] were all more powerful inhibitors than alpha-cyano-4-hydroxycinnamate showing 50% inhibition of pyruvate-dependent O2 consumption by rat heart mitochondria at concentrations of 200, 200 and 50 nM respectively. 4. The specificity of the carrier for its substrate was studied by both influx and efflux experiments. Oxamate, 2-oxobutyrate, phenylpyruvate, 2-oxo-4-methyl-pentanoate, chloroacetate, dichloroacetate, difluoroacetate, 2-chloropropionate, 3-chloropropionate and 2,2-dichloropropionate all exchanged with pyruvate, whereas acetate, lactate and trichloroacetate did not. 5. Pyruvate entry into the mitochondria was shown to be accompanied by the transport of a proton (or by exchange with an OH-ion). This proton flux was inhibited by alpha-cyano-4-hydroxycinnamate and allowed measurements of pyruvate transport at higher temperatures to be made. The activation energy of mitochondrial pyruvate transport was found to be 113 kJ (27 kcal)/mol and by extrapolation the rate of transport of pyruvate at 37 degrees C to be 42 nmol/min per mg of protein. The possibility that pyruvate transport into mitochondria may be rate limiting and involved in the regulation of gluconegenesis is discussed. 6. The transport of various monocarboxylic acids into mitochondria was studied by monitoring proton influx. The transport of dichloroacetate, difluoroacetate and oxamate appeared to be largely dependent on the pyruvate carrier and could be inhibited by pyruvate-transport inhibitors. However, many other halogenated and 2-oxo acids which could exchange with pyruvate on the carrier entered freely even in the presence of inhibitor.  相似文献   

3.
A kinetic analysis of L-cystine uptake in wild-type Salmonella typhimurium indicates the presence of at least two, and possibly three, separate transport systems. CTS-1 accounts for the majority of uptake at 20 muM L-cystine, with a Vmax of 9.5 nmol/min per mg and a Km of 2.0 muM; CTS-2 is a low-capacity, higher-affinity system with a Vmax of 0.22 nmol/min per mg and a Km of 0.05 muM; a third, nonsaturable process has been designated CTS-3. We find that wild-type CTS-1 levels are at least 11 times higher in sulfur-limited cells than in L-cystine-grown cells. Pleiotropic cysteine auxotrophs of the types cysE (lacking serine transacetylase) and cysB- (lacking a regulatory element of positive control) have very low levels of CTS-1 even when grown under conditions of sulfur limitation, which response is analogous to that previously observed for cysteine biosynthetic enzymes (N . M. Kredich, J. Biol. Chem. 246:3474-3484, 1971). CTS-1 is induced in cysE mutants by growth in the presence of O-acetyl-L-serine (the product of serine transacetylase), again paralleling the behavior of the cysteine biosynthetic pathway. Strain DW25, a prototrophic cysBc mutant, which is constitutive for cysteine biosynthesis, is also derepressed for CTS-1 when grown on L-cystine. Since CTS-1 is regulated by sulfur limitation, O-acetyl-L-serine, and the cysB gene product, the same three conditions controlling cysteine biosynthesis, we propose that this transport system is a part of the cysteine regulon.  相似文献   

4.
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.   总被引:2,自引:0,他引:2       下载免费PDF全文
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase.  相似文献   

5.
Purified plasma membrane vesicles from the optic nerve of the squid Sepiotheutis sepioidea accumulate calcium in the presence of Mg2+ and ATP. Addition of the Ca2+ ionophore A23187 to vesicles which have reached a steady state of calcium-active uptake induces complete discharge of the accumulated cation. Kinetic analysis of the data indicates that the apparent Km for free Ca2+ and ATP are 0.2 muM and 21 muM, respectively. The average Vmax is 1 nmol Ca2+/min per mg protein at 25 degrees C. This active transport is inhibited by orthovanadate in the micromolar range. An Na+-Ca2+ exchange mechanism is also present in the squid optic nerve membrane. When an outwardly directed Na+ gradient is imposed on the vesicles, they accumulate calcium in the absence of Mg2+ and/or ATP. This ability to accumulate Ca2+ is absolutely dependent on the Na+ gradient: replacement of Na+ by K+, or passive dissipation of the Na+ gradient, abolishes transport activity. The apparent Km for Ca2+ of the Na+-Ca2+ exchange is more than 10-fold higher than that of the ATP-driven pump (app. Km=7.5 muM). While the apparent Km for Na+ is 74 mM, the Vmax of the exchanger is 27 nmol Ca2+/min per mg protein at 25 degrees C. These characteristics are comparable to those displayed by the uncoupled Ca pump and Na+-Ca2+ exchange previously described in dialyzed squid axons.  相似文献   

6.
L-asparagine uptake in Escherichia coli.   总被引:1,自引:1,他引:0       下载免费PDF全文
The uptake of L-asparagine by Escherichia coli K-12 is characterized by two kinetic components with apparent Km values of 3.5 muM and 80 muM. The 3.5 muM Km system displays a maximum velocity of 1.1 nmol/min per mg of protein, which is a low value when compared with derepressed levels of other amino acid transport systems but is relatively specific for L-asparagine. Compounds providing effective competition for L-asparagine uptake were 4-carbon analogues of the L-isomer with alterations at the beta-amide position, i.e., 5-diazo-4-oxo-L-norvaline (Ki = 4.6 muM), beta-hydroxyamyl-L-aspartic acid (Ki = 10 muM), and L-aspartic acid (Ki = 50 muM). Asparagine uptake is energy dependent and is inhibited by a number of metabolic inhibitors. In a derived strain of E. coli deficient in cytoplasmic asparaginase activity asparagine can be accumulated several-fold above the apparent biosynthetic pool of the amino acid and 100-fold above the external medium. The high affinity system is repressed by culture of cells with L-asparagine supplements in excess of 1 mM and is suggested to be necessary for growth of E. coli asparagine auxotrophs with lower supplement concentrations.  相似文献   

7.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake.  相似文献   

8.
Membrane vesicles isolated from cells of bacillus subtilis W23 accumulate manganese in the presence of an energy source. The artificial electron donor system ascorbate and phenazine methosulfate or reduced nicotinamide adenine dinucleotide and phenazine methosulfate can supply the energy for the uptake. D-Lactate in the presence or absence of phenazine methosulfate would not support manganese accumulation. Anaerobiosis, cyanide, m-chlorophenyl carbonylcyanide hydrozone, valinomycin, gramicidin, and p-hydroxy-mercuribenzoate inhibit the uptake. The inhibition by p-hydroxymercuribenzoate is prevented by excess dithiothreitol. Potassium fluoride or sodium arsenate has no effect on the uptake. The manganese transport system in the B. subtilis vesicles exhibits Michaelis-Menten kinetics with a Km of 13 muM and a Vmax of 1.7 nmol/min per mg (dry weight) of membranes. The uptake of manganese is specific and is not inhibited by 0.1 mM CaCL2 or Mgcl2.  相似文献   

9.
Highly purified [D-glucose-1-14C]lactose has been used to study the transport of lactose by Klebsiella sp. strain CT-1. Strain CT-1 transports lactose by a lactose-inducible system that exhibited an apparent Km of 6 mM lactose and an apparent Vmax of 140 nmol/min per mg of cell protein. Lactose uptake was inhibited competitively by o-nitrophenyl-beta-D-galactoside with a Ki value of 8 mM, but was not inhibited by thio-beta-methyl-galactoside. D-Glucose, D-mannose, 2-deoxyglucose, and alpha-methyl-D-glucoside also inhibited lactose uptake. Phosphoenolpyruvate-dependent hydrolysis of o-nitrophenyl-beta-D-galactoside and lactose-dependent release of pyruvate from phosphoenolpyruvate by benzene-treated CT-1 cells showed that CT-1 transports lactose by a phosphoenolpyruvate:sugar phosphotransferase system. Correlations between the growth rate of CT-1 on lactose and properties of the transport system indicated that transport is the rate limiting step in utilization of lactose.  相似文献   

10.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

11.
The kinetics of Na+-dependent phosphate uptake in rat renal brush-border membrane vesicles were studied under zero-trans conditions at 37 degrees C and the effect of pH on the kinetic parameters was determined. When the pH was lowered it turned out to be increasingly difficult to estimate initial rates of phosphate uptake due to an increase in aspecific binding of phosphate to the brush border membrane. When EDTA or beta-glycerophosphate was added to the uptake medium this aspecific binding was markedly reduced. At pH 6.8, initial rates of phosphate uptake were measured between 0.01 and 3.0 mM phosphate in the presence of 100 mM Na+. Kinetic analysis resulted in a non-linear Eadie-Hofstee plot, compatible with two modes of transport: one major low-affinity system (Km approximately equal to 1.3 mM), high-capacity system (Vmax approximately equal to 1.1 nmol/s per mg protein) and one minor high-affinity (Km approximately equal to 0.03 mM), low-capacity system (Vmax approximately equal to 0.04 nmol/s per mg protein). Na+-dependent phosphate uptake studied far from initial rate conditions i.e. at 15 s, frequently observed in the literature, led to a dramatic decrease in the Vmax of the low-affinity system. When both the extra- and intravesicular pH were increased from 6.2 to 8.5, the Km value of the low-affinity system increased, but when divalent phosphate is considered to be the sole substrate for the low-affinity system then the Km value is no longer pH dependent. In contrast, the Km value of the high-affinity system was not influenced by pH but the Vmax decreased dramatically when the pH is lowered from 8.5 to 6.2. These results suggest that the low-affinity, high-capacity system transports divalent divalent phosphate only while the high-affinity, low-capacity system may transport univalent as well as divalent phosphate. Raising medium sodium concentration from 100 to 250 mM increased Na+-dependent phosphate uptake significantly but the pH dependence of the phosphate transport was not influenced. This observation makes it rather unlikely that pH changes only affect the Na+ site of the Na+-dependent phosphate transport system.  相似文献   

12.
Transport of GSH into renal cortical mitochondria was studied. Mitochondria were highly enriched with little contamination from other subcellular organelles (as assessed by marker enzymes), they exhibited coupled respiration (respiratory control ratio greater than 3.0), and they had initial GSH concentrations of 5.71 +/- 0.65 nmol/mg protein (n = 47). Incubation of mitochondria with GSH in a triethanolamine, pH 7.4, buffer containing sucrose, potassium phosphate, MgCl2, and KCl, produced time- and concentration-dependent increases in intramitochondrial GSH content. Uptake was linear versus time for at least 2 min and exhibited kinetics consistent with one low-affinity, high-capacity process (Km = 1.3 mM, Vmax = 5.59 nmol/min per mg protein), although the results cannot exclude the presence of other, less quantitatively significant pathways. The initial rate of uptake of 5 mM GSH was not significantly altered by uncouplers (0.1 mM 2,4-dinitrophenol and 25 microM carbonyl cyanide m-chlorophenylhydrazone) or by 1 mM ADP. In contrast, incubation with 1 mM ATP, 1 mM KCN, 0.1 mM or 1 mM CaCl2 inhibited uptake by 41, 39, 43, or 55%, respectively. GSH uptake was markedly inhibited by gamma-glutamylglutamate and by a series of S-alkyl GSH derivatives. Strong interactions (i.e., both cis and trans effects) were observed with other dicarboxylates (i.e., succinate, malate, glutamate) but not with monocarboxylates (i.e., lactate, pyruvate). Preincubation of mitochondria with GSH protected against tert-butyl hydroperoxide- or methyl vinyl ketone-induced inhibition of state 3 respiration. These results demonstrate uptake of GSH into renal cortical mitochondria that appears to involve electroneutral countertransport (exchange) with other dicarboxylates. Functionally, GSH uptake into mitochondria can protect these organelles from various forms of injury, such as oxidative stress.  相似文献   

13.
Most of the malic enzyme activity in the brain is found in the mitochondria. This isozyme may have a key role in the pyruvate recycling pathway which utilizes dicarboxylic acids and substrates such as glutamine to provide pyruvate to maintain TCA cycle activity when glucose and lactate are low. In the present study we determined the activity and kinetics of malic enzyme in two subfractions of mitochondria isolated from cortical synaptic terminals, as well as the activity and kinetics in mitochondria isolated from primary cultures of cortical neurons and cerebellar granule cells. The synaptic mitochondrial fractions had very high mitochondrial malic enzyme (mME) activity with a Km and a Vmax of 0.37 mM and 32.6 nmol/min/mg protein and 0.29 mM and 22.4 nmol/min mg protein, for the SM2 and SM1 fractions, respectively. The Km and Vmax for malic enzyme activity in mitochondria isolated from cortical neurons was 0.10 mM and 1.4 nmol/min/mg protein and from cerebellar granule cells was 0.16 mM and 5.2 nmol/min/mg protein. These data show that mME activity is highly enriched in cortical synaptic mitochondria compared to mitochondria from cultured cortical neurons. The activity of mME in cerebellar granule cells is of the same magnitude as astrocyte mitochondria. The extremely high activity of mME in synaptic mitochondria is consistent with a role for mME in the pyruvate recycling pathway, and a function in maintaining the intramitochondrial reduced glutathione in synaptic terminals.  相似文献   

14.
Azotobacter vinelandii growing on galactosides induced two distinct permeases for glucose and galactose. The apparent Vmax and Km of the galactose permease were 16 nmol galactose/min per 10(10) cells and 0.5 mM, respectively. The apparent Vmax and Km of the glucose permease were 7.8 nmol glucose/min per 10(10) cells and 0.04 mM, respectively. Excess glucose had no effect on the galactose uptake. However, excess galactose inhibited glucose transport. The galactosides-induced glucose permease also exhibited different uptake kinetics from that induced by glucose.  相似文献   

15.
The transport of the orally absorbed cephalosporin, cephalexin, was examined in the human epithelial cell line, Caco-2 that possesses intestinal enterocyte-like properties when cultured. In sodium-free buffer, the cells accumulated 1 mM D-[9-14C]cephalexin against a concentration gradient and obtained a distribution ratio of 3.5 within 180 min. Drug uptake was maximal when the extracellular pH was 6.0. Uptake was reduced by metabolic inhibitors and by protonophores indicating that uptake was energy- and proton-dependent. Kinetic analysis of the concentration dependence of the rate of cephalexin uptake showed that a non-saturable component (Kd of 0.18 +/- 0.01 nmol/min per mg protein per mM) and a transport system with a Km of 7.5 +/- 2.8 mM and a Vmax of 6.5 +/- 0.9 nmol/min per mg protein were responsible for drug uptake. Uptake was competitively inhibited by dipeptides. The transport carrier exhibited stereospecificity for the L-isomer of cephalexin. Drug uptake was not affected by the presence of amino acids, organic anions, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid or 4,4'-diisothiocyano-2,2'-disulfonic stilbene. Therefore, Caco-2 cells take up cephalexin by a proton-dependent dipeptide transport carrier that closely resembles the transporter present in the intestine. Caco-2 cells represent a cellular model for future studies of the dipeptide transporter.  相似文献   

16.
Calcium transport in membrane vesicles of Bacillus subtilis.   总被引:4,自引:3,他引:1       下载免费PDF全文
Right-side-out membrane vesicles of Bacillus subtilis W23 grown on tryptone-citrate medium accumulated Ca2+ under aerobic conditions in the presence of a suitable electron donor. Ca2+ uptake was an electrogenic process which was completely inhibited by carbonyl cyanide m-chlorophenylhydrazone or valinomycin and not by nigericin. This electrogenic uptake of calcium was strongly dependent on the presence of phosphate and magnesium ions. The system had a low affinity for Ca2+. The kinetic constants in membrane vesicles were Km = 310 microM Ca2+ and Vmax = 16 nmol/mg of protein per min. B. subtilis also possesses a Ca2+ extrusion system. Right-side-out-oriented membrane vesicles accumulated Ca2+ upon the artificial imposition of a pH-gradient, inside acid. This system had a high affinity for Ca2+; Km = 17 microM Ca2+ and Vmax = 3.3 nmol/mg of protein per min. Also, a membrane potential, inside positive, drove Ca2+ transport via this Ca2+ extrusion system. Evidence for a Ca2+ extrusion system was also supplied by studies of inside-out-oriented membrane vesicles in which Ca2+ uptake was energized by respiratory chain-linked oxidation of NADH or ascorbate-phenazine methosulfate. Both components of the proton motive force, the pH gradient and the membrane potential, drove Ca2+ transport via the Ca2+ extrusion system, indicating a proton-calcium antiport system with a H+ to Ca2+ stoichiometry larger than 2. The kinetic parameters of this Ca2+ extrusion system in inside-out-oriented membranes were Km = 25 microM and Vmax = 0.7 nmol/mg of protein per min.  相似文献   

17.
Deermice lacking the low-Km alcohol dehydrogenase eliminated butan-1-ol, a substrate for microsomal oxidation but not for catalase, at 117 mumol/min per kg body wt. Microsomal fractions and hepatocytes metabolized butan-1-ol also (Vmax. = 6.7 nmol/min per nmol of cytochrome P-450, Km = 0.85 mM; Vmax. = 5.3 nmol/min per 10(6) cells, Km = 0.71 mM respectively). These results are consistent with alcohol oxidation by the microsomal system in these deermice.  相似文献   

18.
We investigated the uptake of biphenyl by the psychrotolerant, polychlorinated biphenyl (PCB)-degrader, Pseudomonas sp. strain Cam-1 and the mesophilic PCB-degrader, Burkholderia sp. strain LB400. The effects of growth substrates, metabolic inhibitors, and temperature on [14C]biphenyl uptake were studied. Biphenyl uptake by both strains was induced by growth on biphenyl, and was inhibited by dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), which are metabolic uncouplers. The Vmax and Km for biphenyl uptake by Cam-1 at 22 degrees C were 5.4 +/- 1.7 nmol x min(-1) x (mg of cell protein)(-1) and 83.1 +/- 15.9 micromol x L(-1), respectively. The Vmax and Km for biphenyl uptake by LB400 at 22 degrees C were 3.2 +/- 0.3 nmol x min(-1) x (mg of cell protein(-1)) and 51.5 +/- 9.6 micromol x L(-1), respectively. At 15 degrees C, the maximum rate for biphenyl uptake by Cam-1 and LB400 was 3.1 +/- 0.3 nmol x min(-1) x (mg of cell protein)(-1) and 0.89 +/- 0.1 nmol x min(-1) x (mg of cell protein)(-1), respectively. Thus, the maximum rate for biphenyl uptake by Cam-1 at 15 degrees C was more than 3 times higher than that for LB400.  相似文献   

19.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

20.
Incubation of chick embryo fibroblasts in glucose-free medium resulted in a dramatic increase in the rate of 2-deoxy-D-glucose transport. The greatest increase in rate occurred during the first 20 hours of incubation in glucose-free medium and was blocked by actinomycin D, dordycepin, or cycloheximide. The conditions of 2-deoxy-D-glucose concentration and time of incubation with the sugar were determined where transport rather than phosphorylation was rate-limiting in sugar uptake. These studies demonstrated that the transport of 2-deoxy-D-glucose was rate-limiting for only 1 or 2 min when the concentration of sugar in the medium was near the Km for transport, i.e. 2mM. No difference was found in the level of hexokinase activity in homogenates prepared from cells incubated glucose-free medium or standard medium when either 2-deoxy-D-[14C]glucose or D-glucose was used as substrate. A kinetic analysis of the initial rates of 2-deoxy-D-glucose transport by Lineweaver-Burk plots showed that the Vmax for sugar transport increased from 18 to 95 nmol per mg of protein per min when fibroblasts were incubated in glucose-free medium for 40 hours. The Km remained constant at 2 mM. Analysis of the initial rates of 3-omicron-methyl-D-glucose transport by Lineweaver-Burk plots further substantiated that the increase in sugar transport was due to an increase in the Vmax for transport with the Km remaining constant. The activation energy for the transport reaction calculated from an Arrhenius plot was 17.4 Cal per mol for cells cultured in the standard medium and 17.2 Cal per mol for cells cultured in the glucose-free medium. These results are consistent with the interpretation that the Vmax increase observed in hexose-starved cells is due to an increase in the number of transport sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号