首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Nogo在中枢神经损伤再生中的作用机制   总被引:1,自引:0,他引:1  
Nogo是中枢神经系统(CNS)少突胶质细胞分泌的一种髓磷脂蛋白,它的主要功能是抑制损伤后轴突的再生,它含有两个完全独立的具有抑制活性的结构域:位于细胞内的amino—Nogo和位于细胞表面的Nogo-66。Nogo-66是通过与受体复合体NgR/p75/Lingo—1结合,触发Rho信号通路来发挥作用。Nogo及其信号转导机制日益成为CNS损伤再生的研究热点,就Nogo在CNS损伤再生中的作用机制作一综述。  相似文献   

2.
中枢神经系统轴突再生抑制蛋白   总被引:1,自引:0,他引:1  
Hu JG  Lu PH  Xu XM 《生理科学进展》2004,35(4):311-315
中枢神经系统 (CNS)轴突再生的主要障碍之一是存在抑制再生的蛋白 ,迄今 ,已在少突胶质细胞 /髓鞘中相继发现至少三个重要的轴突再生抑制蛋白 ,即髓鞘相关糖蛋白 (MAG)、Nogo A和少突胶质细胞 /髓鞘糖蛋白 (OMgp)。最近的研究又证实 ,这三个不同的抑制成分可能主要通过与一个共同的受体Nogo6 6受体 (NgR)结合而发挥作用。这些研究成果扩充了对CNS损伤后轴突再生障碍的理解 ,也为探讨CNS损伤的治疗新策略提供了新的思路。  相似文献   

3.
脊髓损伤(spinal cord injury,SCI)往往导致患者下肢活动功能受限,甚至瘫痪,降低患者生活质量,且治愈率低。髓磷脂相关抑制因子(myelin associated inhibitors,MAIs)是抑制受损中枢神经系统(central nervous system,CNS)再生修复的一个重要因素。对MAIs及其信号通路的干扰能有效逆转CNS神经再生抑制信号,促进脊髓损伤后轴突的再生。MAIs抑制轴突再生信号通路的发现及其深入研究为损伤脊髓的免疫治疗提供了充分的理论依据和研究靶点。将对抑制神经再生信号通路中MAIs及其受体的生物学功能新进展以及以此为治疗靶点设计的脊髓损伤免疫治疗策略作一综述。  相似文献   

4.
Yang P 《生理科学进展》2010,41(4):313-316
成年哺乳动物中枢神经系统(CNS)神经元内在再生能力低下是其损伤后不能自发性再生的主要原因之一。目前,针对成年CNS神经元内在生长能力的降低提出了一个全新的理论,即某些控制发育完成后细胞过度生长的肿瘤抑制基因在成熟神经元中高表达,与CNS损伤后再生抑制有关。其中,10号染色体缺失的磷酸酯酶和张力蛋白同源物基因(PTEN)在成年CNS神经元内高表达主要与神经元内在再生能力降低有关,抑制PTEN可通过多条途径保护受损神经元并促进其再生。本文综述了以PTEN为靶点促进CNS损伤修复的研究进展。  相似文献   

5.
Nogo-A及其受体在成年哺乳动物的中枢神经系统(CNS)中,尤其是在中枢神经系统损伤及修复过程中的作用及机制已经被广泛而深入的研究,但是它们在CNS发育中的扮演的角色却了解甚少。新近研究表明,Nogo-A在CNS发育过程中神经前体细胞分化及迁移,轴突的生长及可塑性的变化以及少突胶质细胞前体细胞分化和成髓鞘化等过程中发挥着重要的作用。  相似文献   

6.
Nogo-A及其受体在成年哺乳动物的中枢神经系统(CNS)中,尤其是在中枢神经系统损伤及修复过程中的作用及机制已经被广泛而深入的研究,但是它们在CNS发育中的扮演的角色却了解甚少.新近研究表明,Nogo-A在CNS发育过程中神经前体细胞分化及迁移,轴突的生长及可塑性的变化以及少突胶质细胞前体细胞分化和成髓鞘化等过程中发挥着重要的作用.  相似文献   

7.
成年哺乳动物的中枢神经系统(CNS)受损后,解剖学上的修复水平非常有限。因神经纤维再生明显受阻,往往造成神经损伤后永久性的功能缺陷。在成年CNS抑制轴突生长的因子中,有一类是髓磷脂蛋白(myelin),而Nogo是这类蛋白中的一种,由少突神经胶质细胞产生,抑制轴突的生长。通过不同的启动子和差别剪接,nogo基因会产生三种主要的转录产物Nogo-A、-B和-C。  相似文献   

8.
少突胶质细胞(oligodendrocytes, OLs)是中枢神经系统(central nervous system, CNS)中主要的成髓鞘细胞,其功能障碍会引发一系列的神经性疾病,例如:多发性硬化症(multiple sclerosis,MS)和脑白质营养不良。少突胶质细胞祖细胞(oligodendrocyte precursor cells, OPCs)的移植是治疗髓鞘相关疾病的一种潜在方法。在脑损伤后, OPCs可向OLs方向分化并对损伤部位的轴突进行髓鞘化,但是, OPCs在大脑中仅占5%~8%,这种髓鞘修复作用十分有限。通过体外重编程技术生成诱导性少突胶质细胞祖细胞(induced oligodendrocyte precursor cells, iOPCs)的策略可为髓鞘损伤疾病的治疗提供大量的细胞资源。但是该方法仍存在一系列亟待解决的问题,包括i OPCs生成效率较低、体外培养周期较长等。因此,该文从限定性转录因子、miRNA以及小分子物质等方面阐述了iOPCs的生成方法,并分析了iOPCs的现存问题和应用前景,旨在为其在疾病模型构建、药物开发和再生医学等方面的应用提供理论和技术参考。  相似文献   

9.
中枢神经损伤后影响轴突再生的因素   总被引:4,自引:0,他引:4  
Zhao M  Liu SJ 《生理科学进展》2004,35(2):107-112
与周围神经不同 ,成年哺乳动物中枢神经损伤后轴突不能再生 ,往往造成不可逆的功能丧失。影响再生的原因相当复杂 ,胶质瘢痕形成、神经营养因子缺乏及存在诸多的抑制性因子等。本文就一些影响中枢神经再生的因子从其结构、分布、功能及可能的作用机制诸方面作一综述  相似文献   

10.
Lingo-1(leucine-rich repeat and Ig domain containing,Nogo receptor-interacting protein1)是一种选择性表达于中枢神经系统的跨膜蛋白。目前,针对髓鞘再生过程的研究发现,在中枢神经系统损伤后出现高表达Lingo-1,从而抑制损伤区少突胶质前体细胞(oligodendrocyte progenitor cells,OPCs)的分化并降低神经元的存活率,最终抑制损伤神经元的髓鞘再生。由此提示,Lingo-1可能成为促进损伤后神经修复的重要新靶点。该文就近年来关于Lingo-1对中枢神经系统髓鞘再生影响的研究及其作用机制作一简单综述。  相似文献   

11.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

12.
中枢神经系统(CNS)损伤后神经不能再生,在很大程度上是由于外环境中存在大量的神经生长抑制因子。这些抑制因子中作用力最强的三种分子Nogo-A、MAG和OMgp是分别通过与其特异性受体NgR1的结合而发挥神经生长抑制作用的。NgR1是一种膜表面蛋白,不能直接激活细胞内信号,必须通过与  相似文献   

13.
Nogo与Nogo受体研究   总被引:2,自引:0,他引:2  
nogo是新近发现的一种基因,编码3种蛋白质:Nogo-A、Nogo-B和Nogo-C.迄今为止,已证明它有抑制成熟中枢神经系统(CNS)神经元轴突再生及诱导细胞凋亡的作用.Nogo受体是一种糖基醇磷脂结合蛋白.对Nogo和Nogo受体的研究,对于CNS再生障碍及肿瘤的认识和治疗有重要意义.  相似文献   

14.
了解中枢神经系统髓鞘损伤再生的调控机制对多种中枢神经系统脱髓鞘疾病的治疗有重要意义。近年来研究发现,中枢神经系统中小胶质细胞的不同极化形式在调控髓鞘损伤再生中起到重要作用。在一系列细胞内外信号分子的介导下,M1型小胶质细胞会分泌一些促炎因子而加重髓鞘的损伤,而M2型小胶质细胞一方面可分泌抗炎分子和吞噬损伤坏死细胞而抑制炎症反应,为髓鞘再生创造条件;另一方面还能分泌多种神经营养因子,促进髓鞘修复。此外,最近研究发现M2型小胶质细胞在一定程度上还能促进少突胶质前体细胞的成熟分化,进而促进了中枢神经系统髓鞘的再生。这些研究结果提示,促进小胶质细胞的M2型极化可能成为治疗脱髓鞘疾病的新途径。  相似文献   

15.
过去认为神经元受损伤后难以再生.近年发现神经干细胞(neuralstemcells,NSC)主要存在于胚胎和成熟个体的中枢神经系统(CNS)中,具有增殖和分化的潜能.NSC成为神经学科的热点课题,是神经发育和疾病研究的重要平台,作为新生神经细胞的“种子”,它为治疗缺血缺氧性脑病提供了新策略,尤其是中枢神经细胞的治疗性再生和基因治疗.对NSC的发育、组织学特点、增殖分化的调控及治疗前景进行了阐述.  相似文献   

16.
Gu WL  Lu PH 《生理科学进展》2007,38(2):101-105
硫酸软骨素蛋白多糖(chondroitin sulfate proteoglycans,CSPGs)是中枢神经系统(CNS)细胞外基质中的重要组成成分,在CNS的发育、成熟后正常功能的维持中发挥重要功能,如发育中影响神经细胞的迁移和轴突生长,成年后参与神经可塑性的控制等;而病理条件下,如CNS受损后又可做为胶质瘢痕的重要组分抑制受损神经的再生。研究发现,用酶降解CSPGs的糖氨多糖链或阻断其合成可以有效地削弱CSPGs对受损神经的抑制作用,促进轴突再生。然而,精确调控CSPGs特定时空表达模式的分子机制,以及功能发挥所涉及的完整信号转导通路还有待进一步研究。  相似文献   

17.
多发性硬化是一类中枢神经系统炎症性脱髓鞘疾病,其发病原因目前尚未明确。深入地研究该疾病的发生发展机制将为临床预防及治疗提供更有效的帮助。髓鞘是中枢神经系统重要的生理结构,主要发挥保护轴突和加速神经冲动传导的作用。在成年中枢神经系统,髓鞘损伤后可以由少突胶质前体细胞经增殖、迁移和分化而重新形成,即髓鞘再生。然而,在慢性多发性硬化症患者的病灶中,由于少突胶质前体细胞分化障碍,导致髓鞘再生减弱,进而造成轴突损伤和神经元丢失,发生不可逆的神经功能障碍,是进展型多发性硬化发生的重要原因。因此,研究进展型多发性硬化患者病灶中少突胶质前体细胞的分化障碍及其相关信号机制对于临床治疗和药物开发具有重要意义。本综述将着眼于少突胶质前体细胞的分化调控机制,分析其在进展型多发性硬化病理发生中的作用和意义,并讨论了相关的潜在治疗靶点。  相似文献   

18.
NG2胶质细胞是哺乳动物中枢神经系统中不同于星形胶质细胞、小胶质细胞和少突胶质细胞的一类新型胶质细胞。除分化为少突胶质细胞外,NG2胶质细胞还能分化成星形胶质细胞和神经细胞。NG2胶质细胞能对多种损伤和疾病作出反应,分化为少突胶质细胞,在脱髓鞘后髓鞘修复中起到重要作用。NG2胶质细胞具有异质性,阐明不同发育阶段和区域的差异有助于探寻NG2胶质细胞增殖和分化机制,为预防脱髓鞘和促进髓鞘再生奠定理论基础。本文主要概述NG2胶质细胞的结构、起源和分布,着重讨论NG2胶质细胞不同发育阶段和区域的异质性以及在髓鞘再生疾病中的地位。  相似文献   

19.
斑马鱼作为一种新兴的模式动物,被广泛应用于神经、心血管、消化、造血等各生理系统的发育及相关疾病的研究。中枢神经系统(central nervous system,CNS)疾病是困扰人类健康的重大疾病之一。神经损伤后不易再生和修复等特点,导致了临床上诸多CNS疾病迄今仍无有效疗法。斑马鱼作为脊椎动物,因其与哺乳动物在遗传及生理上有很高的同源性和功能保守性,近年来成为研究CNS疾病的理想动物模型。基于斑马鱼构建的许多疾病研究模型对深入揭示CNS疾病的治病分子机制及对应疾病的靶向治疗等具有重要的启示作用。本文将综述近年来斑马鱼作为模式动物在CNS疾病研究中的应用进展。  相似文献   

20.
《生命科学研究》2017,(6):534-541
少突胶质细胞(oligodendrocytes,OLs)在脊椎动物中枢神经系统(central nervous system,CNS)中负责形成包裹神经元轴突的髓鞘,保证神经冲动沿轴突的快速传导,并为其提供营养支持。OLs发育异常及损伤会导致严重的神经系统疾病,比如脑白质营养不良(leukodystrophy)、多发性硬化症(multiple sclerosis,MS)等。少突胶质细胞前体细胞(oligodendrocyte progenitor cells,OPCs)在胚胎期由神经前体细胞(neural progenitor cells,NPCs)产生,该过程受到一系列细胞内外因素的调控,对这一问题的研究也是神经系统研究的重要内容。现主要基于遗传学结果,简述关于OPCs产生的调控机制的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号