首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L E Dyck 《Life sciences》1987,40(6):571-575
The concentrations of the trace amines, m-tyramine, p-tyramine, phenylethylamine and tryptamine, were measured in the striatum of the brain and in the kidney of adult rats treated with alpha-monofluoromethyldopa (MFMD), an inhibitor of aromatic amino acid decarboxylase. While MFMD decreased the levels of all four amines in the kidney, only phenylethylamine and tryptamine levels were decreased in the striatum compared to control. Striatal p-tyramine levels were not affected, while striatal m-tyramine levels were increased by MFMD. When the rats were injected with a monoamine oxidase (MAO) inhibitor before MFMD administration, similar changes in striatal and kidney trace amine levels were observed compared to MFMD alone.  相似文献   

2.
The trace amines phenylethylamine, tryptamine, p-tyramine and m-tyramine have been measured in the striatum of both control and MAO-treated rats. Dose-response and time-response studies have been carried out with clorgyline and deprenyl, inhibitors which preferentially inhibit the A and B forms of MAO, respectively, and with tranylcypromine and phenylethylhydrazine, which are used clinically in the treatment of depression. Phenylethylamine was increased by 1 mg/kg of deprenyl, but was unaffected by clorgyline at doses up to 50 mg/kg, while the tyramines and tryptamine were increased by low doses of clorgyline, but were increased only by much greater doses of deprenyl than those required to affect phenylethylamine. Phenylethylamine is oxidized by the B form of MAO, but tryptamine and the tyramines appear to be oxidized by both A and B MAO. The observed proportional increases in trace amine levels are much greater than those observed for the classical neurotransmitters, noradrenaline, dopamine and 5-hydroxytryptamine. As these increases are differential, selective manipulation of trace amine concentrations is possible.  相似文献   

3.
L E Dyck 《Life sciences》1989,44(17):1149-1156
The basal and 50 mM K+-stimulated release of m-tyramine (mTA), p-tyramine (pTA), tryptamine (TR) and phenylethylamine (PE) from striatal slices obtained from rats pretreated with a monoamine oxidase inhibitor (MAOI) was investigated. A K+-stimulated release of mTA and pTA was observed, but K+ did not stimulate either TR or PE release. The latter two amines, therefore, are unlikely to be conventional neurotransmitters in the rat striatum. The release of endogenous striatal pTA from control rats was also investigated. Veratridine stimulated endogenous pTA release, but 50 mM K+ did not. It is possible, therefore, that endogenous pTA can be released in a transmitter-like fashion.  相似文献   

4.
The effects of chronic administration of clorgyline and pargyline on rat brain monoamine metabolism have been examined. The inhibitory selectivity of these drugs towards serotonin deamina-tion (MAO type A) and phenylethylamine deamination (MAO type B) can be maintained over a 21-day period by proper selection of low doses of these drugs (0.5-1.0 mg/kg/24h). The results are consistent with MAO type A catalyzing the deamination of serotonin and norepinephrine and with MAO type B having little effect on these monoamines. Dopamine appears to be dcaminated in vivo principally by MAO type A. Clorgyline administration during a 3-week period was accompanied by persistent elevations in brain norepinephrine concentrations; serotonin levels were also increased during the first 2 weeks, but returned towards control levels by the third week of treatment. Low doses of pargyline did not increase brain monoamine concentrations, but treatment with higher doses for 3 weeks led to elevations in brain norepinephrine and 5-hydroxytryptamine; at this time significant MAO-A inhibition had developed. The changes in monoamine metabolism seen at the end of the chronic clorgyline regimen are not due to alterations in tryptophan hydroxylase activity. At this time tyrosine hydroxylase activity was also unaffected.  相似文献   

5.
The concentration of p-tyramine in the rat striatum was increased significantly by intraperitoneal injection of phenelzine (5 or 100 mg/kg). Unlike other monoamine oxidase (MAO) inhibitors, phenelzine had no effect on p-tyramine levels in the first 1-2 h following injection. The high dose of phenelzine increased the p-tyramine levels much more than the low dose. In addition, the high dose of phenelzine increased striatal p-tyrosine levels significantly 12 h after injection. Further studies showed that phenelzine inhibited the tyrosine aminotransferase activity of rat liver homogenates; the IC50 was 50 microM. Phenelzine also inhibited the aromatic L-amino acid decarboxylase activity of rat brain homogenate with an IC50 of 25 microM. Following intraperitoneal injection of 100 mg/kg phenelzine, the initial concentration of phenelzine in the striatum appears to be high enough to inhibit aromatic L-amino acid decarboxylase. It is suggested that the multiple enzyme inhibition caused by administration of high doses of phenelzine accounts for its unusual effects on striatal p-tyramine levels compared with other MAO inhibitors, i.e., its initial lack of effect on p-tyramine levels followed later by very large increases in p-tyramine levels.  相似文献   

6.
Cultured C6 rat glial cells preferentially deaminated 5-hydroxytryptamine, tryptamine, dopamine and tyramine in comparison to phenylethylamine and benzylamine. Deamination of all substrates was uniformly sensitive to inhibition by clorgyline and relatively insensitive to deprenyl. These data together with the observations of simple sigmoid curves for the inhibition of tyramine deamination by both inhibitors suggest that C6 glial cells contain mainly monoamine oxidase type A, which previously had been suggested to be primarily an intraneuronal MAO type. As these findings are in agreement with other studies of brain MA0 activity in mitochondria separated from neuronal vs glial cell preparations, they help explain why MA0 activity measured with some substrates may be little affected by lesions or by drugs producing nerve ending degeneration.  相似文献   

7.
1. Mitochondrial MAO specific activity was measured in eggs and early embryos of the teleostean fish Esox lucius using tryptamine, 5-hydroxytryptamine (5-HT) and phenylethylamine (PEA) as substrates. 2. Tryptamine is the most readily deaminated substrate in mitochondria isolated from unfertilized eggs and embryos at the stages of cleavage, blastula and gastrula. 3. Monoamine oxidase activity gradually decreases during development and at the gastrula stage it is respectively 80% (tryptamine), 70% (5-HT) and 50% (PEA) of that found in the egg using the corresponding substrate. 4. The inhibition of egg MAO activity by clorgyline and deprenyl measured in E. lucius eggs using tryptamine as substrate, indicates the presence of a single form of MAO not corresponding to the MAO A and MAO B described in terrestrial vertebrates.  相似文献   

8.
1. Monoamine oxidase (MAO) activity towards tryptamine, 5-hydroxytryptamine (5-HT) and phenylethylamine (PEA) has been measured in mitochondria isolated from carp and trout eggs. 2. In carp eggs all the tested substrates are metabolized and the highest affinity is found with tryptamine. In trout eggs a consistent level of MAO activity is obtained using tryptamine. 3. The inhibition dose-response curves of clorgyline and deprenyl indicate that both in carp and trout eggs there is only one form of mitochondrial MAO, distinct from MAO A and B which have been described in vertebrate tissues. 4. Both in carp and trout egg mitochondria a semicarbazide-sensitive amine oxidase is not involved in the deamination of the used substrates. 5. MAO found in carp and trout eggs might be involved in metabolism of some neurotransmitter monoamines during early developmental stages.  相似文献   

9.
Brofaromine, a selective and reversible inhibitor of monoamine oxidase-A (MAO-A) was given to 19 women while 17 received placebo for 8 weeks. All met DSM III-R criteria for bulimia nervosa, a psychiatric disorder in which uncontrolled overeating episodes are accompanied by purging activities and extreme concerns about body shape and weight. The following indices were measured: plasma and urinary phenylacetic acid (PAA), homovanillic acid (HVA), vanillylmandellic acid (VMA); plasma tryptamine (T), phenylethylamine (PE), and 5-hydroxyindoleacetic acid (5-HIAA) and urinary 6-sulphatoxymelatonin (aMT6s). PE levels remained the same but T showed a trend toward elevation over time. Twenty-four hour levels of urinary aMT6s in BN patients were higher at week 4 when compared to baseline and week 8. There was a significant reduction in plasma VMA and HVA over time during treatment with brofaromine and both plasma HVA and VMA were significantly lower for the brofaromine group compared to placebo at week 4. Plasma 5-HIAA was significantly higher for the brofaromine group after 8 weeks when compared to placebo. Urinary VMA decreased significantly from baseline to week 4 with a partial elevation at 8 weeks. Urinary VMA was also significantly lower in patients on brofaromine at week 4. This study verifies that brofaromine complies with predicted MAO-A inhibiting patterns in a clinical population.  相似文献   

10.
Effects of tricyclic antidepressants upon human platelet monoamine oxidase   总被引:1,自引:0,他引:1  
D J Edwards  M O Burns 《Life sciences》1974,15(12):2045-2058
Tricyclic antidepressant drugs were found to inhibit human platelet MAO. The I50 for the inhibition by amitriptyline was 4 × 10?6 M, 1.6 × 10?5 M, and 2 × 10?4 M when phenylethylamine, tryptamine, and benzylamine were used as substrates. Amitriptyline exhibited noncompetitive inhibition with the substrates phenylethylamine and tryptamine but competitive inhibition with benzylamine. Solubilization and partial purification of platelet MAO did not alter the inhibitory effects of tricyclics. Treatment of the partially purified enzyme with the chaotropic agent sodium perchlorate produced only a slight increase in the inhibition constant for amitriptyline. Our findings suggest that selective inhibition of phenylethylamine oxidation may mediate the antidepressant actions of tricyclics. In addition, our studies provide some evidence for the existence of multiple catalytic sites of MAO activity in the human platelet.  相似文献   

11.
Abstract: Pretreatment of rat striatal slices with the selective type A monoamine oxidase (MAO) inhibitor clorgyline was found to produce significant inhibition of dopamine (DA) synthesis. DA synthesis was reduced by nearly 50%, but not until more than 90% of the type A enzyme was inhibited. In contrast, complete inhibition of the type B MAO following deprenyl treatment had no effect. It is suggested that interneuronal accumulation of DA following inhibition of type A MAO leads to feedback inhibition at the rate-limiting step in DA biosynthesis, tyrosine hydroxylation. These results are also consistent with the presence of a type A MAO within DA-containing neurons and provide evidence of a regulatory role for type A MAO in the synthesis of brain DA.  相似文献   

12.
Following electric stimulation of the substantia nigra for 1 h there was a substantial increase in dopamine (DA) turnover in the rat caudate nucleus evidenced by an increase in its acid metabolite homovanillic acid (HVA). Concurrently there was an increase in striatal m-tyramine (mTA) and a substantial decrease in p-tyramine (pTA). Lesioning the substantia nigra to decrease impulse flow resulted in a buildup of striatal DA and mTA, but again a decrease in pTA. Following pretreatment with a tyrosine hydroxylase inhibitor, the effects of stimulation of the nigra on mTA were reversed, there being a significant decrease in this amine. The decrease of pTA in response was partially prevented by tyrosine hydroxylase inhibition. The effects of stimulation or substantia nigra lesions on pTA levels were reversed, however, by tyrosine hydroxylase inhibition, a significant increase in this amine being recorded. mTA and DA levels were largely unaffected by a combination of lesion and tyrosine hydroxylase inhibition. The results provide insight into the possible biosynthetic interrelationships between DA and the tyramine isomers in the rat caudate nucleus.  相似文献   

13.
Monoamine Oxidase in Rat and Bovine Endocrine   总被引:1,自引:0,他引:1  
Monoamine oxidase (MAO) was characterized in tissue homogenates from rat pancreatic islets, rat neurohypophysis and adenohypophysis, and rat and bovine adrenal medulla and adrenal cortex. Phenylethylamine was preferentially deaminated by rat pancreatic islet and bovine adrenal medulla MAO and with slight preference by rat neurohypophysis MAO, whereas 5-hydroxytryptamine was preferentially deaminated by MAO from all other endocrine tissues. Tyramine was a good substrate for all tissues. Clorgyline, a selective inhibitor of MAO-A, preferentially inhibited deamination of 5-hydroxytryptamine by all tissue homogenates, whereas deprenyl, a selective inhibitor of MAO-B, preferentially inhibited deamination of phenylethylamine. Km values for 5-hydroxytryptamine and tyramine were higher by one to two decimal powers than for phenylethylamine in homogenates from all endocrine tissues. Km values were significantly lower for 5-hydroxytryptamine and significantly higher for phenylethylamine in rat and bovine adrenal cortex than in adrenal medulla. According to these results, the contributions of MAO-B to total enzyme activity were 70% for rat pancreatic islets, 45% for rat neurohypophysis, 15% for rat adenohypophysis, 20% for rat adrenal medulla, 10% for rat adrenal cortex, 60% for bovine adrenal medulla, and 20% for bovine adrenal cortex. PC 12 cells also contained predominantly MAO-A (90%); however, an increased Km for phenylethylamine and a sensitivity of deamination of this MAO-B substrate to inhibition by clorgyline are indicators of abnormal behavior of MAO in this clonal rat pheochromocytoma cell line.  相似文献   

14.
Abstract— Monoamine oxidase (MAO) activity against tryptamine was compared in a number of continuous rodent lines, including neuroblastoma, hepatoma, melanoma, nephroma, sarcoma and L cells. Activities against tryptamine varied over 300-fold in homogenates of different lines, being highest in hepatoma line MH1C1 and lowest in a neuroblastoma line lacking hypoxanthine phosphoribosyltransferase (HPRT) activity. The amount, but not the type, of MAO activity varied with the stage of growth in homogenates of neuroblastoma and hepatoma cells. Measurements of succinate-cytochrome c reductase (SCCR), another mitochondrial enzyme, also showed 20-fold variations between lines, being highest in neuroblastoma line N1E-115 and lowest in hepatoma line MH1C1; SCCR and MAO activities appeared to be regulated independently. The relative proportions of the A and B types of MAO activity were determined in homogenates and living cultures. Clorgyline inhibition of tryptamine deamination in homogenates indicated that in all lines except MH1C1, greater than 95% of the MAO activity was of the A type. In MH1C1 homogenates, using clorgyline or deprenyl, 40–70% of the activity appeared to be of the A type and 30-60% of the B type. In cultures of neuroblastoma N1E-115 cells, deamination of tryptamine and dopamine was sensitive to inhibition by low concentrations of clorgyline, indicating that the A type of activity is present intracellularly. as in homogenates. In MH1C1 hepatoma cultures, tryptamine deamination showed a biphasic sensitivity to clorgyline. We interpret this to mean that A and B types of MAO activity occur together in living hepatoma cells.  相似文献   

15.
Addition of small amounts of plasma activated the deamination of tryptamine by platelet monoamine oxidase (MAO). At higher concentrations, plasma inhibited the deamination instead. The inhibition was increased with increasing amounts of plasma added. The inhibition was uncompetitive in nature, partially reversed by prior ultrafiltration of the plasma through PM30 membranes and completely reversed by protein precipitation of plasma with perchloric acid. Addition of high amounts of plasma invitro also inhibited the activity of bovine striatal MAO. The inhibition of striatal deamination of tryptamine by plasma was noncompetitive in nature, completely reversed by ultrafiltration through PM30 membranes and partially reversed by perchloric acid treatment. The inhibition of striatal deamination of serotonin was noncompetitive in nature, not reversed by ultrafiltration but completely reversed by perchloric acid treatment. The pattern of inhibition of platelet or striatal MAO by plasma was different from that induced by addition of bovine serum albumin (BSA). Low concentrations of BSA added invitro activated the deamination of tryptamine or serotonin by platelet or striatal MAO by decreasing the Km, while higher concentrations also decreased the Vmax. The presence of protein, non-albumin circulating modulators of platelet or striatal MAO in plasma is discussed.  相似文献   

16.
Repeated administration of the dopamine agonist quinpirole induces behavioral sensitization in rats that is characterized by a four- to eight-fold increase in the amount of locomotion compared to an acute dose of quinpirole, in the absence of any increases in mouthing behavior. The monoamine oxidase (MAO) inhibitor, clorgyline, switches behavioral sensitization to quinpirole from that of locomotion to self-directed mouthing. The mechanism by which clorgyline produces this switch in behavioral sensitization is unknown, but is independent of the known effects of clorgyline, namely, inhibition of MAO, inhibition of striatal dopamine uptake, or stimulation of sigma and I(2) receptors. Because clorgyline also inhibits hypothalamo-pituitary-adrenal (HPA) axis function, and increased HPA activity facilitates the behavioral effects of psychostimulant drugs, the effects of clorgyline on quinpirole sensitization are possibly due to an inhibition of HPA function. Therefore, the present study examined whether HPA activity is required for sensitization to quinpirole, and whether clorgyline exerts its effects on quinpirole sensitization via inhibition of HPA function. Control and hypophysectomized rats were administered clorgyline (1 mg/kg, s.c.) or vehicle 90 min before each injection of quinpirole (0.5 mg/kg x 8, twice weekly) or saline. To assess the level of sensitization reached by control and hypophysectomized rats, test injections of quinpirole (0.0, 0.07, and 0.2 mg/kg) were administered. Chronic quinpirole administration produced equivalent levels of locomotor sensitization in control and hypophysectomized rats. Clorgyline was equally effective in blocking the development of locomotor sensitization in control and hypophysectomized rats, and in sensitizing self-directed mouthing. The present study suggests that (1). HPA function is not necessary for the development of quinpirole sensitization and, (2). clorgyline does not produce its effects on behavioral sensitization to quinpirole via an inhibition of HPA activity. Moreover, the observation that quinpirole sensitization develops normally in the absence of any pituitary endocrine function suggests that pituitary-gonadal and pituitary-thyroid axes activity are also not necessary for quinpirole sensitization to occur.  相似文献   

17.
The substrate specificity of rat skeletal muscle MAO has been studied. By the use of clorgyline as a MAO A inhibitor, it is found that 5-hydroxytryptamine, tryptamine, and kynuramine are deaminated by MAO A whereas benzylamine is a substrate for both forms of MAO. Phenethylamine displays a concentration-dependent preference for the two forms of MAO. These substrate specificies of the two forms of MAO in skeletal muscle are different from those observed in liver and brain but resemble closely that seen with heart. The half-lives of MAO A and MAO B in muscle estimated by rate of recovery from pargyline inhibition are 6.9 and 6.4 days, respectively.  相似文献   

18.
The kinetic properties of type A and type B monoamine oxidase (MAO) were examined in guinea pig striatum, rat striatum, and autopsied human caudate nucleus using 3,4-dihydroxyphenylethylamine (dopamine, DA) as the substrate. MAO isozyme ratio in guinea pig striatum (28% type A/72% type B) was similar to that in human caudate nucleus (25% type A/75% type B) but different from that in rat striatum (76% type A/24% type B). Additional similarities between guinea pig striatum and human caudate nucleus were demonstrated for the affinity constants (Km) of each MAO) isozyme toward DA. Endogenous concentrations of DA, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were also measured in guinea pig and rat striatum following selective type A (clorgyline-treated) and type B (deprenyl-treated) MAO inhibition. In guinea pig, DA metabolism was equally but only partially affected by clorgyline or deprenyl alone. Combined treatment with clorgyline and deprenyl was required for maximal alterations in DA metabolism. By contrast, DA metabolism in rat striatum was extensively altered by clorgyline but unaffected by deprenyl alone. Finally, the deamination of DA in synaptosomes from guinea pig striatum was examined following selective MAO isozyme inhibition. Neither clorgyline nor deprenyl alone reduced synaptosomal DA deamination. However, clorgyline and deprenyl together reduced DA deamination by 94%. These results suggest that the isozyme localization and/or isozyme affinity for DA, rather than the absolute isozyme content, determines the relative importance of type A and type B MAO in synaptic DA deamination. Moreover, based on the enzyme kinetic properties of each MAO isozyme, guinea pig striatum may serve as a suitable model of human DA deamination.  相似文献   

19.
Tetrahymena pyriformis strain HSM was found to have monomine oxidase (MAO) and a catechol-3-methyl transferase-like (COMT) activity. As in mammalian tissues, the MAO activity is predominantly localized in the mitochondrial pellet and COMT in the cytosol. The COMT-like activity was present in amounts comparable to several mouse tissues and was inhibited by tropolone. MAO activity was much lower than in any of the mouse tissues tested, and its activity varied greatly from preparation to preparation. The substrate preference of Tetrahymena MAO was tryptamine greater than serotonin greater than dopamine, and activity increased with increasing pH from pH 6.5 to pH 7.8, as does that of mouse liver MAO. Teh Km of Tetrahymena MAO for tryptamine was approximately 4 micrometer, an order of magnitude lower than that of mouse liver MAO. Sensitivity of inhibition by MAO inhibitors was variable. In some preparations, no inhibition was observed. In others clear inhibition was obtained, harmine and clorgyline being among the most potent inhibitors.  相似文献   

20.
R W Fuller  S K Hemrick 《Life sciences》1978,22(12):1083-1086
Pargyline, a slightly selective inhibitor of type B monoamine oxidase (MAO), inhibited phenylethylamine oxidation by 88 ± 1% and 81 ± 1% in rat brain and liver, respectively, at 24 hrs after injection of a 30 mg/kg i.p. dose. Serotonin oxidation was inhibited to a lesser extent, 68 ± 4% and 68 ± 2%, respectively, in brain and liver. In rats treated with harmaline, a short-lasting reversible MAO inhibitor selective for type A MAO, the inhibition of phenylethylamine oxidation after pargyline injection still occurred but the inhibition of serotonin oxidation was prevented. These results illustrate that a selective MAO inhibitor can be used to enhance the selectivity of an irreversible inhibitor, presumably by occupying active sites on a certain form of MAO temporarily and thereby preventing its inactivation. In heart, inhibition of both phenylethylamine and serotonin oxidation by pargyline was prevented by harmaline; this finding supports other evidence that phenylethylamine is metabolized by type A MAO in rat heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号