首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolates able to grow on 3- or 4-hydroxybiphenyl (HB) as the sole carbon source were obtained by enrichment culture. The 3-HB degrader Pseudomonas sp. strain FH12 used an NADPH-dependent monooxygenase restricted to 3- and 3,3'-HBs to introduce an ortho-hydroxyl. The 4-HB degrader Pseudomonas sp. strain FH23 used either a mono- or dioxygenase to generate a 2,3-diphenolic substitution pattern which allowed meta-fission of the aromatic ring. By using 3-chlorocatechol to inhibit catechol dioxygenase activity, it was found that 2- and 3-HBs were converted by FH23 to 2,3-HB, whereas biphenyl and 4-HB were attacked by dioxygenation. 4-HB was metabolized to 2,3,4'-trihydroxybiphenyl. Neither organism attacked chlorinated HBs. The degradation of 3- and 4-HBs by these strains is therefore analogous to the metabolism of biphenyl, 2-HB, and naphthalene in the requirement for 2,3-catechol formation.  相似文献   

2.
Bacterial metabolism of polychlorinated biphenyls   总被引:2,自引:0,他引:2  
Microbial metabolism is responsible for the removal of persistent organic pollutants including PCBs from the environment. Anaerobic dehalogenation of highly chlorinated congeners in aquatic sediments is an important process, and recent evidence has indicated that Dehalococcoides and related organisms are predominantly responsible for this process. Such anaerobic dehalogenation generates lower chlorinated congeners which are easily degraded aerobically by enzymes of the biphenyl upper pathway (bph). Initial biphenyl 2,3-dioxygenases are generally considered the key enzymes of this pathway which determine substrate range and extent of PCB degradation. These enzymes have been subject to different protein evolution strategies, and subsequent enzymes have been considered as crucial for metabolism. Significant advances have been made regarding the mechanistic understanding of these enzymes, which has also included elucidation of the function of BphK glutathione transferase. So far, the genomes of two important PCB-metabolizing organisms, namely Burkholderia xenovorans strain LB400 and Rhodococcus sp. strain RHA1, have been sequenced, with the rational to better understand their overall physiology and evolution. Genomic and proteomic analysis also allowed a better evaluation of PCB toxicity. Like all bph gene clusters which have been characterized in detail, particularly in strains LB400 and RHA1, these genes were localized on mobile genetic elements endowing single strains and microbial communities with a high flexibility and adaptability. However, studies show that our knowledge on enzymes and genes involved in PCB metabolism is still rather fragmentary and that the diversity of bacterial strategies is highly underestimated. Overall, metabolism of biphenyl and PCBs should not be regarded as a simple linear pathway, but as a complex interplay between different catabolic gene modules.  相似文献   

3.
The effects of three tetrachlorobiphenylols [2',3',4',5'-tetrachloro-2-biphenylol (1); 2',3',4',5'-tetrachloro-4- biphenylol (2); and 2',3',4',5'-tetrachloro-3-biphenylol (3)]; three monochlorobiphenylols [5-chloro-2-biphenylol (5), 3-chloro-2-biphenylol (6); and 2-chloro-4-biphenylol (7)] and a tetrachlorobiphenyldiol [3,3',5,5'-tetrachloro-4,4'-biphenyldiol (4) on respiration, adenosine triphosphatase (ATPase) activity, and swelling in isolated mouse liver mitochondria have been investigated. Tetrachlorobiphenylols (1-3) and the tetrachlorobiphenyldiol (4) inhibited state-3 respiration in a concentration-dependent manner with succinate as substrate (flavin adenine dinucleotide [FAD]-linked) and the tetrachlorobiphenyldiol (4) caused a more pronounced inhibitory effect on state-3 respiration than the other congeners. The monochlorobiphenylols 5-7 were less active as inhibitors of state-3 mitochondrial respiration and significant effects were observed only at higher concentration (greater than or equal to 0.4 microM). However, in the presence of the nicotinamide adenine dinucleotide (NAD)-linked substrates (glutamate plus malate), hydroxylated PCBs (1-7) significantly inhibited mitochondrial state-3 respiration in a concentration-dependent manner. Compounds 5, 6, and 7 uncoupled mitochondrial oxidative phosphorylation only in the presence of FAD-linked substrate as evidenced by increased oxygen consumption during state-4 respiratory transition, stimulating ATPase activity, releasing oligomycin-inhibited respiration, and inducing mitochondrial swelling (5, 6, and 7). Tetrachlorobiphenylols 1, 2, and 3 had no effect on mitochondrial ATPase activity while the tetrachlorobiphenyldiol, 4, decreased the enzyme activity. The possible inhibitory site of electron transport by these compounds and their toxicologic significance is discussed.  相似文献   

4.
Ten years after reports on the existence of anaerobic dehalogenation of polychlorinated biphenyls (PCBs) in sediment slurries, we report here on the rapid reductive dehalogenation of para-hydroxylated PCBs (HO-PCBs), the excreted main metabolites of PCB in mammals, which can exhibit estrogenic and antiestrogenic activities in humans. The anaerobic bacterium Desulfitobacterium dehalogenans completely dehalogenates all flanking chlorines (chlorines in ortho position to the para-hydroxyl group) from congeners such as 3,3',5, 5'-tetrachloro-4,4'-dihydroxybiphenyl.  相似文献   

5.
Bacterial metabolism of carbofuran.   总被引:9,自引:3,他引:6       下载免费PDF全文
Fifteen bacteria capable of degrading carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) were isolated from soil samples with a history of pesticide application. All isolates were gram negative and were oxidase- and catalase-positive rods; they occurred singly or as short chains. All of the identified isolates belonged to one of two genera, Pseudomonas and Flavobacterium. They were separated into three groups based on their mode of utilization of carbofuran. Six isolates were placed in group I; these isolates utilized carbofuran as a sole source of nitrogen. Seven isolates were placed in group II; these isolates utilized the pesticide as a sole source of carbon. Isolates of both groups I and II hydrolyzed carbofuran to carbofuran phenol. Two isolates, designated group III, also utilized carbofuran as a sole source of carbon. They degraded the pesticide more rapidly, however, so up to 40% of [14C]carbofuran was lost as 14CO2 in 1 h. The results suggest that these isolates degrade carbofuran by utilizing an oxidative pathway.  相似文献   

6.
The effects of three tetrachlorobiphenylols [2′,3′,4′,5′-tetrachloro-2-biphenylol (1); 2′,3′,4′,5′-tetrachloro-4-biphenylol (2); and 2′,3′,4′,5′-tetrachloro-3-biphenylol (3)]; three monochlorobiphenylols [5-chloro-2-biphenylol (5), 3-chloro-2-biphenylol (6); and 2-chloro-4-biphenylol (7)] and a tetrachlorobiphenyldiol [3,3′,5,5′-tetrachloro-4,4′-biphenyldiol (4) on respiration, adenosine triphosphatase (ATPase)] activity, and swelling in isolated mouse liver mitochondria have been investigated. Tetrachlorobiphenylols (13) and the tetrachlorobiphenyldiol (4) inhibited state-3 respiration in a concentration-dependent manner with succinate as substrate (flavin adenine dinucleotide [FAD]-linked) and the tetrachlorobiphenyldiol (4) caused a more pronounced inhibitory effect on state-3 respiration than the other congeners. The monochlorobiphenylols 57 were less active as inhibitors of state-3 mitochondrial respiration and significant effects were observed only at higher concentration (≥0.4 μM). However, in the presence of the nicotinamide adenine dinucleotide (NAD)-linked substrates (glutamate plus malate), hydroxylated PCBs (17) significantly inhibited mitochondrial state-3 respiration in a concentration-dependent manner. Compounds 5, 6, and 7 uncoupled mitochondrial oxidative phosphorylation only in the presence of FAD-linked substrate as evidenced by increased oxygen consumption during state-4 respiratory transition, stimulating ATPase activity, releasing oligomycin-inhibited respiration, and inducing mitochondrial swelling (5, 6, and 7). Tetrachlorobiphenylols 1, 2, and 3 had no effect on mitochondrial ATPase activity while the tetrachlorobiphenyldiol, 4, decreased the enzyme activity. The possible inhibitory site of electron transport by these compounds and their toxicologic significance is discussed.  相似文献   

7.
Several Streptomyces and Bacillus strains were examined for their ability to transform the anti-inflammatory drug flurbiprofen 1 to the hydroxylated metabolites that are found in humans after ingestion of this compound. Of the seven Streptomyces spp. examined, all but one transformed flurbiprofen to the main mammalian metabolite 4′-hydroxyflurbiprofen 2, and the majority also produced 3′,4′-dihydroxyflurbiprofen 3. Three strains, Streptomyces griseus DSM40236 and ATCC13273, and Streptomyces subrutilis DSM40445, also elaborated 3′-methoxy, 4′-hydroxy-flurbiprofen 4. None of the Bacillus spp. examined yielded these metabolites. Examination of the extracted supernatants of Streptomyces lavenduligriseus and Streptomyces rimosus by fluorine-19 nuclear magnetic resonance (19F NMR), indicated new resonances and these new fluorometabolites were purified by HPLC and revealed to be flurbiprofenamide 5 and 7-hydroxyflurbiprofenamide 6 after MS and NMR analyses. Subsequent re-examination of the culture supernatants from Bacillus subtilis IM7, Bacillus megaterium NCIMB8291 and B. megaterium ATTC14581 showed that these strains also produced 5 and 6. Resting cell investigations suggested that the amidation reaction employed nitrogen from an as yet unidentified amino acid.  相似文献   

8.
9.
Two bacterial strains were isolated with 3-chloroacrylic acid (CAA) as sole source of carbon and energy. Strain CAA1, a Pseudomonas cepacia sp., was capable of growth with only the cis-isomer of CAA. Strain CAA2, a coryneform bacterium, utilized both isomers of CAA as sole source of carbon and energy. Strain CAA1 contained cis-CAA hydratase and strain CAA2 contained two hydratases, one with cis-CAA hydratase activity and one with trans-CAA hydratase activity. The product of the hydratase activities with CAA was malonate semialdehyde. In both strains malonate semialdehyde was subsequently decarboxylated by a cofactor-independent decarboxylase yielding acetaldehyde and CO2.  相似文献   

10.
Bacterial metabolism of quaternary ammonium compounds.   总被引:4,自引:3,他引:1       下载免费PDF全文
Of 10 quaternary ammonium compounds tested for biodegradation by the biological oxygen demand technique, only decyl- and hexadecyltrimethylammonium bromides were decomposed by organisms derived from sewage and soil. A mixture consisting of individual strains of Pseudomonas and Xanthomonas grew in solutions containing decyltrimethylammonium bromide as sole carbon source. The xanthomonad metabolized this quaternary ammonium compound in the presence of other organic molecules. The products of this activity included 9-carboxynomyl- and 7-carboxyheptyltrimethylammonium, suggesting that the terminal carbon of the decyl moiety is oxidized and the resulting carboxylic acid is subject to beta-oxidation.  相似文献   

11.
A species of Flavobacterium isolated from pond water by its ability to grow aerobically on ethylene glycol as the role source of carbon initially oxidised the diol to glyoxylate via glycollate. The glyoxylate was metabolised by the glycerate pathway to acetyl-CoA. The acetyl-CoA was further metabolised by the tricarboxylic acid cycle plus malate synthase acting anaplerotically.  相似文献   

12.
Bacterial carnitine metabolism   总被引:4,自引:0,他引:4  
  相似文献   

13.
14.
1. A study was made of the biodegradation of alkylbenzene sulphonate homologues, one of the major components of commercially marketed detergents. A Bacillus species was elected for growth on alkylbenzene sulphonate homologues as the sole source of carbon and sulphur. 2. The results from both whole-cell and cell-free systems indicated that the alkyl, aryl and sulphonate moieties of alkylbenzene sulphonate homologues were all further metabolized by the Bacillus species. 3. The alkyl side chain, after a presumed initial oxidation of the terminal methyl group, was subsequently oxidized by a beta-oxidation pathway. Three enzymes of the beta-oxidation pathway, i.e. acyl-CoA synthetase, acyl-CoA dehydrogenase and beta-hydroxyacyl-CoA dehydrogenase, were identified in cell-free extracts of the detergent-grown Bacillus species. The substrate specificity of acyl-CoA synthetase indicated activity towards several alkylbenzene sulphonate homologues. 4. The sulphonate moiety was released as sulphite by a desulphonating enzyme. Some kinetic properties of this enzyme were determined. The sulphite was subsequently metabolized to either sulphate or adenosine 5'-sulphatophosphate. Two enzymes involved in sulphite metabolism, i.e. sulphite-cytochrome c reductase and adenosine 5'-sulphatophosphate-cytochrome c reductase were detected in cell-free extracts of undecylbenzene-p-sulphonate-grown Bacillus species. 5. The combined results of continuous sampling programmes monitored by both t.l.c. and sulphite appearance in the growth medium indicated that desulphonation of the aromatic moiety was the likely first step in the overall biodegradation of several alkylbenzene sulphonate homologues. 6. The presence of p-hydroxyphenylpropionate, p-hydroxybenzoate and 3,4-dihydroxybenzoate in cells after growth on several alkylbenzene sulphonate homologues containing an odd number of carbon atoms in the side chain was confirmed by g.l.c. and t.l.c. analysis. Cells grown on several homologues containing an even number of carbon atoms in the side chain were shown to contain p-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate. 7. The aromatic nucleus obtained from undecylbenzene-p-sulphonate was further metabolized by an oxidation sequence involving an ;ortho-cleavage' route. 8. An overall metabolic pathway for the biodegradation of various alkylbenzene sulphonate homologues by this Bacillus species is proposed.  相似文献   

15.
16.
17.
Bacterial metabolism of carbofuran   总被引:1,自引:0,他引:1  
Fifteen bacteria capable of degrading carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) were isolated from soil samples with a history of pesticide application. All isolates were gram negative and were oxidase- and catalase-positive rods; they occurred singly or as short chains. All of the identified isolates belonged to one of two genera, Pseudomonas and Flavobacterium. They were separated into three groups based on their mode of utilization of carbofuran. Six isolates were placed in group I; these isolates utilized carbofuran as a sole source of nitrogen. Seven isolates were placed in group II; these isolates utilized the pesticide as a sole source of carbon. Isolates of both groups I and II hydrolyzed carbofuran to carbofuran phenol. Two isolates, designated group III, also utilized carbofuran as a sole source of carbon. They degraded the pesticide more rapidly, however, so up to 40% of [14C]carbofuran was lost as 14CO2 in 1 h. The results suggest that these isolates degrade carbofuran by utilizing an oxidative pathway.  相似文献   

18.
19.
This article examines the relationship between (or dependence of) bacterial evolution in prokaryotes and metabolism, and the changing physical-chemical conditions present during early evolution.  相似文献   

20.
The effects of pretreatment with symmetrically dihalogenated biphenyls (DXBs, X-F, Cl(C), Br(B) and I) on rat liver drug metabolism enzymes were investigated. 4,4'-DFB, -DCB, and -DBB as well as 2,2'-DFB appeared to be inducers of microsomal cytochrome P-450-linked monoxygenases (N-demethylases of aminopyrine and ethylmorphine). However, no structure-induction relationship was found. 4,4'-DXBs also induced a cytochrome P-448-linked mono-oxygenase (ethoxyresorufin O-deethylase), and their order of induction potential seemed to parallel the increase of the size of the halogen substituent. Therefore, 4,4'-DXB's may be categorized as mixed-type inducers, the cytochrome P-450 component being the more pronounced. Data on the cytochrome P-448 induction by dihalogenated biphenyls with only para substituents may be considered as a refinement of the previously described structure-activity relationship in this respect. All of the DXBs except 3,3'-DCB and 4,4'-DIB, enhanced, like phenobarbital, the activity of UDP-glucuronyltransferase toward 4-hydroxybiphenyl. Only 4,4'-DFB was able to induce the activity of glutathione S-transferase toward 1,2-epoxy-3-(p-nitrophenoxy)propane. Studies after 4,4'-DBB-treatment revealed, like phenobarbital, a preferential induction of ethylmorphine N-demethylase on rough endoplasmic reticulum-derived microsomes, whereas UDP-glucuronyltransferase activity toward 4-hydroxybiphenyl was induced to a larger extent on smooth endoplasmic reticulum microsomes, suggesting a dissimilar enzyme induction in microsomal subfractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号