首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Plasma membrane transporter SLC6A14 transports all neutral and basic amino acids in a Na/Cl – dependent way and it is up-regulated in many types of cancer. Mass spectrometry analysis of overexpressed SLC6A14–associated proteins identified, among others, the presence of cytosolic heat shock proteins (HSPs) and co-chaperones. We detected co-localization of overexpressed and native SLC6A14 with HSP90-beta and HSP70 (HSPA14). Proximity ligation assay confirmed a direct interaction of overexpressed SLC6A14 with both HSPs. Treatment with radicicol and VER155008, specific inhibitors of HSP90 and HSP70, respectively, attenuated these interactions and strongly reduced transporter presence at the cell surface, what resulted from the diminished level of the total transporter protein. Distortion of SLC6A14 proper folding by both HSPs inhibitors directed the transporter towards endoplasmic reticulum-associated degradation pathway, a process reversed by the proteasome inhibitor – bortezomib. As demonstrated in an in vitro ATPase assay of recombinant purified HSP90-beta, the peptides corresponding to C-terminal amino acid sequence following the last transmembrane domain of SLC6A14 affected the HSP90-beta activity. These results indicate that a plasma membrane protein folding can be controlled not only by chaperones in the endoplasmic reticulum, but also those localized in the cytosol.  相似文献   

2.

Background  

Heat shock proteins (HSPs), including mainly HSP110, HSP90, HSP70, HSP60 and small HSP families, are evolutionary conserved proteins involved in various cellular processes. Abnormal expression of HSPs has been detected in several tumor types, which indicates that specific HSPs have different prognostic significance for different tumors. In the current studies, the expression profiling of HSPs in human low-grade glioma tissues (HGTs) were investigated using a sensitive, accurate SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative proteomic strategy.  相似文献   

3.
Plants synthesize several families of low molecular weight (LMW) heat shock proteins (HSPs) in response to elevated temperatures. We have characterized two cDNAs, HSP18.1 and HSP17.9, that encode members of the class I family of LMW HSPs from pea (Pisum sativum). In addition, we investigated the expression of these HSPs at the mRNA and protein levels during heat stress and recovery. HSP18.1 and HSP17.9 are 82.1% identical at the amino acid level and are 80.8 to 92.9% identical to class I LMW HSPs of other angiosperms. Heat stress experiments were performed using intact seedlings subjected to a gradual temperature increase and held at a maximum temperature of 30 to 42 degrees Celsius for 4 hours. HSP18.1 and HSP17.9 mRNA levels peaked at the beginning of the maximum temperature period and declined rapidly after the stress period. Antiserum against a HSP18.1 fusion protein recognized both HSP18.1 and HSP17.9 but not members of other families of LMW HSPs. The accumulation of HSP18.1-immunodetected protein was proportional to the severity of the heat stress, and the protein had a half-life of 37.7 ± 8 hours. The long half-life of these proteins supports the hypothesis that they are involved in establishing thermotolerance.  相似文献   

4.
Heat shock proteins (HSP) are a family of proteins induced in cells exposed to different insults. This induction of HSPs allows cells to survive stress conditions. Mammalian HSPs have been classified into six families according to their molecular size: HSP100, HSP90, HSP70, HSP60, HSP40 and small HSPs (15 to 30kDa) including HSP27. These proteins act as molecular chaperones either helping in the refolding of misfolded proteins or assisting in their elimination if they become irreversibly damaged. In recent years, proteomic studies have characterized several different HSPs in various tumor types which may be putative clinical biomarkers or molecular targets for cancer therapy. This has led to the development of a series of molecules capable of inhibiting HSPs. Numerous studies speculated that over-expression of HSP is in part responsible for resistance to many anti-tumor agents and chemotherapeutics. Hence, from a pharmacological point of view, the co-administration of HSP inhibitors together with other anti-tumor agents is of major importance in overcoming therapeutic resistance. In this review, we provide an overview of the current status of HSPs in autoimmune, cardiovascular, and neurodegenerative diseases with special emphasis on cancer.  相似文献   

5.
Synthesis of heat shock proteins (HSPs) following cellular stress is a response shared by many organisms. Amongst the HSP family, the ∼70 kDa HSPs are the most evolutionarily conserved with intracellular chaperone and extracellular immunoregulatory functions. This study focused on the effects of larval excretory-secretory products (ESPs) from the parasite Schistosoma mansoni on HSP70 protein expression levels in haemocytes (defence cells) from its snail intermediate host Biomphalaria glabrata. S. mansoni larval stage ESPs are known to interfere with haemocyte physiology and behaviour. Haemocytes from two different B. glabrata strains, one which is susceptible to S. mansoni infection and one which is resistant, both showed reduced HSP70 protein levels following 1 h challenge with S. mansoni ESPs when compared to unchallenged controls; however, the reduction observed in the resistant strain was less marked. The decline in intracellular HSP70 protein persisted for at least 5 h in resistant snail haemocytes only. Furthermore, in schistosome-susceptible snails infected by S. mansoni for 35 days, haemocytes possessed approximately 70% less HSP70. The proteasome inhibitor, MG132, partially restored HSP70 protein levels in ESP-challenged haemocytes, demonstrating that the decrease in HSP70 was in part due to intracellular degradation. The extracellular signal-regulated kinase (ERK) signalling pathway appears to regulate HSP70 protein expression in these cells, as the mitogen-activated protein-ERK kinase 1/2 (MEK1/2) inhibitor, U0126, significantly reduced HSP70 protein levels. Disruption of intracellular HSP70 protein expression in B. glabrata haemocytes by S. mansoni ESPs may be a strategy employed by the parasite to manipulate the immune response of the intermediate snail host.  相似文献   

6.
A survey of the heat shock response was carried out in a series of streptomycetes. Four major heat shock proteins (HSPs) were observed in each of four species (Streptomyces albus, S. lividans, S. parvulus, S. viridochromogenes) after pulse labeling with [35S]methionine and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three corresponded to the major procaryotic HSPs Lon, DnaK, and GroEL on the basis of their apparent molecular masses (94 to 100, 70, and 56 to 58 kDa, respectively). In addition, a smaller protein (16 to 18 kDa) was detected in all species but was most dramatically induced in S. albus. Consequently, studies focused on this species. As in other procaryotic systems, thermal induction (elicited by a shift from 30 degrees C to 41 degrees C) of the 70- and 94-kDa proteins was transient and expression returned to uninduced levels after 60 min. In contrast, the 56- to 58-kDa (GroEL) and 18-kDa proteins (HSP18) remained induced for more than 2 h. Two-dimensional gel electrophoresis allowed resolution of at least eight S. albus HSPs. HSP56-58 was composed of multiple acidic protein species, whereas HSP18 appeared to be basic. In spite of these differences in their physical characteristics, the N-terminal peptide sequence of HSP18 was similar to those of GroEL-like proteins found in other organisms and identical to one of the HSP56-58 species. In fact, N-terminal amino acid analysis of the S. albus 56- to 58-kDa species showed that it was composed of two proteins that differed in 3 of 10 positions, an observation that was supported by the detection of two groEL-like genes by Southern hybridization. The amino acid sequence of one of these proteins was identical to that of HSP18. Pulse-chase experiments did not reveal evidence of posttranslational processing of either HSP56-58 or HSP18.  相似文献   

7.
The HSPs (heat‐shock proteins) of the 70‐kDa family, the constitutively expressed HSC70 (cognate 70‐kDa heat‐shock protein) and the stress‐inducible HSP70 (stress‐inducible 70‐kDa heat‐shock protein), have been reported to be actively secreted by various cell types. The mechanisms of the release of these HSPs are obscure, since they possess no consensus secretory signal sequence. We showed that baby hamster kidney (BHK‐21) cells released HSP70 and HSC70 in a serum‐free medium and that this process was the result of an active secretion of HSPs rather than the non‐specific release of the proteins due to cell death. It was found that the secretion of HSP70 and HSC70 is independent of de novo protein synthesis. BFA (Brefeldin A) did not inhibit the basal secretion of HSPs, indicating that the secretion of HSP70 and HSC70 from cells occurs by a non‐classical pathway. Exosomes did not contribute to the secretion of HSP70 and HSC70 by cells. MBC (methyl‐β‐cyclodextrin), a substance that disrupts the lipid raft organization, considerably reduced the secretion of both HSPs, indicating that lipid rafts are involved in the secretion of HSP70 and HSC70 by BHK‐21 cells. The results suggest that HSP70 and HSC70 are actively secreted by BHK‐21 cells in a serum‐free medium through a non‐classical pathway in which lipid rafts play an important role.  相似文献   

8.
Pea plants ( Pisum sativum L. cv. Feltham First) exposed to a heat stress of 37°C for 6 h accumulated two low molecular weight (LMW) heat shock proteins (HSPs) of molecular mass 22 kDa. The two LMW HSPs were associated with purified mitochondria. N‐terminal amino acid sequencing analysis indicates that the more basic of these proteins is a novel protein. The response of other cultivars of P. sativum to heat shock revealed that up to three 22‐kDa HSPs were expressed in a cultivar‐specific manner. Evidence presented suggests that the different 22‐kDa HSPs arise as a result of there being multiple 22‐kDa HSP genes. The expression of the most basic novel HSP was studied in the Feltham First cultivar using two dimensional SDS‐PAGE. Treatment of intact plants with chloramphenicol and cycloheximide prior to heat stress treatment indicated that the LMW HSPs were nuclear encoded and de novo synthesised. The response to heat shock was rapid with protein expression detected within 45 min and the protein remained in excess of 6 days following removal of the stress. The protein accumulated to very high levels with maximal expression being 2% of the total mitochondrial protein. The results are discussed in relation to the likely role of LMW HSPs in thermotolerance.  相似文献   

9.
Three cDNA clones (GmHSP23.9, GmHSP22.3, and GmHSP22.5) representing three different members of the low-molecular-weight (LMW) heat shock protein (HSP) gene superfamily were isolated and characterized. A fourth cDNA clone, pFS2033, was partially characterized previously as a full-length genomic clone GmHSP22.0. The deduced amino acid sequences of all four cDNA clones have the conserved carboxyl-terminal LMW HSP domain. Sequence and hydropathy analyses of GmHSP22, GmHSP22.3, and GmHSP22.5, representing HSPs in the 20 to 24 kDa range, indicate they contain amino-terminal signal peptides. The mRNAs from GmHSP22, GmHSP22.3, and GmHSP22.5 were preferentially associated in vivo with endoplasmic reticulum (ER)-bound polysomes. GmHSP22 and GmHSP22.5 encode strikingly similar proteins; they are 78% identical and 90% conserved at the amino acid sequence level, and both possess the C-terminal tetrapeptide KQEL which is similar to the consensus ER retention motif KDEL; the encoded polypeptides can be clearly resolved from each other by two-dimensional gel analysis of their hybrid-arrest translation products. GmHSP22.3 is less closely related to GmHSP22 (48% identical and 70% conserved) and GmHSP22.5 (47% identical and 65% conserved). The fourth cDNA clone, GmHSP23.9, encodes a HSP of ca. 24kDa with an amino terminus that has characteristics of some mitochondrial transit sequences, and in contrast to GmHSP22, GmHSP22.3, and GmHSP22.5, the corresponding mRNA is preferentially associated in vivo with free polysomes. It is proposed that the LMW HSP gene superfamily be expanded to at least six classes to include a mitochondrial class and an additional endomembrane class of LMW HSPs.  相似文献   

10.
Li T  Fan K  Wang J  Wang W 《Protein engineering》2003,16(5):323-330
It is well known that there are some similarities among various naturally occurring amino acids. Thus, the complexity in protein systems could be reduced by sorting these amino acids with similarities into groups and then protein sequences can be simplified by reduced alphabets. This paper discusses how to group similar amino acids and whether there is a minimal amino acid alphabet by which proteins can be folded. Various reduced alphabets are obtained by reserving the maximal information for the simplified protein sequence compared with the parent sequence using global sequence alignment. With these reduced alphabets and simplified similarity matrices, we achieve recognition of the protein fold based on the similarity score of the sequence alignment. The coverage in dataset SCOP40 for various levels of reduction on the amino acid types is obtained, which is the number of homologous pairs detected by program BLAST to the number marked by SCOP40. For the reduced alphabets containing 10 types of amino acids, the ability to detect distantly related folds remains almost at the same level as that by the alphabet of 20 types of amino acids, which implies that 10 types of amino acids may be the degree of freedom for characterizing the complexity in proteins.  相似文献   

11.
During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat‐shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress‐denatured substrates and/or to prevent aggregation of disease‐associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70‐dependent refolding of stress‐denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70‐independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.  相似文献   

12.
13.
AimsSeveral recent studies, including ours, have indicated the importance of heat shock proteins (HSPs) in cytoprotection against cytotoxic agents and environmental stresses mediated by the chaperone function of HSPs (molecular chaperones). However, the target molecule that is recognized by HSPs in damaged cells currently remains unknown. As HSPs rapidly recognize and bind to degenerated protein in cells, target molecules of HSPs might be key molecules for the initiation and pathogenesis of cellular damage. In the present study, gastric mucosal proteins that specifically bind to the HSP70 family (HSC70) were analyzed using HSC70-affinity chromatography.Main methodsThe gastric mucosa was removed from Sprague–Dawley rats after exposure to water immersion-stress for 0, 1, 3 or 5 h. Soluble fractions of each gastric mucosa were applied to the HSC70-affinity column separately. After washing off non-specific binding proteins, specific binding proteins were eluted by ATP-containing buffer. Binding proteins were analyzed by SDS-polyacrylamide gel electrophoresis. In addition, the amino acid sequence of purified proteins was also analyzed.Key findingsSpecific HSC70-binding proteins with a molecular weight of 200-kDa and 45-kDa were eluted from an affinity column when gastric mucosal homogenate of 1-h stress exposure was applied. The amino acid sequencing showed that these binding proteins were cytoskeletal myosin (heavy chain) and actin, respectively.SignificanceDuring the pathogenesis of stress-induced gastric mucosal damage, structurally degenerated cytoskeletal myosin (heavy chain) and actin may be key or initiation molecules which structural changes were firstly recognized by molecular chaperone.  相似文献   

14.
Heat shock proteins (HSPs) expression is commonly used as indicators of cellular stress in animals. However, very little is known about either the expression patterns of HSPs or their role in the stress-tolerance phenomenon in early life stages of fish. To this end, we examined the impact of food-deprivation (12 h), reduced oxygen levels (3.5 mg/L for 1 h) and heat shock (HS: + 5 °C for 1 h) on HSP70 and HSP90 protein expression in early life stages of the gilthead sea bream (Sparus aurata), a warm-water aquaculture species. Also, we investigated HSP70 and HSP90 response to food-deprivation (7 days) in early life stages of rainbow trout (Oncorhynchus mykiss), a cool-water aquaculture species, and the tolerance of this larvae to heat shock (either + 5 or + 10 °C for 1 h). Our results clearly demonstrate that food-deprivation enhances HSP70 and HSP90 protein expression in larvae of both species. In gilthead sea bream larvae, the stressors-induced HSP70 and HSP90 (only in the reduced oxygen group) protein expression returned to unstressed levels after 24 h recovery. In fed trout larvae, a + 5 °C heat shock did not elevate HSP70 and HSP90 expression, whereas 100% mortality was evident with a + 10 °C HS. However, food-deprived trout larvae, which had higher HSP70 and HSP90 protein content, survived HS and showed HS-dependent increases in HSP70, but not HSP90 expression. Overall, HSP70 and HSP90 protein expression in early life stages of fish have the potential to be used as markers of nutritional stress, while elevation of the tissue HSPs content may be used as a means to increase stress tolerance during larval rearing.  相似文献   

15.
Dokholyan NV 《Proteins》2004,54(4):622-628
Selecting a protein sequence that corresponds to a specific three-dimensional protein structure is known as the protein design problem. One principal bottleneck in solving this problem is our lack of knowledge of precise atomic interactions. Using a simple model of amino acid interactions, we determine three crucial factors that are important for solving the protein design problem. Among these factors is the protein alphabet-a set of sequence elements that encodes protein structure. Our model predicts that alphabet size is independent of protein length, suggesting the possibility of designing a protein of arbitrary length with the natural protein alphabet. We also find that protein alphabet size is governed by protein structural properties and the energetic properties of the protein alphabet units. We discover that the usage of average types of amino acid in proteins is less than expected if amino acids were chosen randomly with naturally occurring frequencies. We propose three possible scenarios that account for amino acid underusage in proteins. These scenarios suggest the possibility that amino acids themselves might not constitute the alphabet of natural proteins.  相似文献   

16.
Three related gene families of low-molecular-weight (LMW) heat shock proteins (HSPs) have been characterized in plants. We describe a fourth LMW HSP family, represented by PsHSP22.7 from Pisum sativum and GmHSP22.0 from Glycine max, and demonstrate that this family of proteins is endomembrane localized. PsHSP22.7 and GmHSP22.0 are 76.7% identical at the amino acid level. Both proteins have amino-terminal signal peptides and carboxyl-terminal sequences characteristic of endoplasmic reticulum (ER) retention signals. The two proteins closely resemble class I cytoplasmic LMW HSPs, suggesting that they evolved from the cytoplasmic proteins through the addition of the signal peptide and ER retention motif. The endomembrane localization of these proteins was confirmed by cell fractionation. The polypeptide product of PsHSP22.7 mRNA was processed to a smaller-M(r) form by canine pancreatic microsomes; in vivo, GmHSP22.0 polysomal mRNA was found to be predominantly membrane bound. In vitro-processed PsHSP22.7 corresponded in mass and pI to one of two proteins detected in ER fractions from heat-stressed plants by using anti-PsHSP22.7 antibodies. Like other LMW HSPs, PsHSP22.7 was observed in higher-molecular-weight structures with apparent masses of between 80 and 240 kDa. The results reported here indicate that members of this new class of LMW HSPs are most likely resident ER proteins and may be similar in function to related LMW HSPs in the cytoplasm. Along with the HSP90 and HSP70 classes of HSPs, this is the third category of HSPs localized to the ER.  相似文献   

17.
18.
Molecular chaperones are a wide group of unrelated protein families whose role is to assist others proteins. Comparably, under environmental stress, stress proteins behave as biocatalysts of protein stabilization. Stress proteins include a large class of proteins that were originally termed heat shock proteins (HSPs) due to their initial discovery in tissues exposed to elevated temperatures. Many, but not all, stress proteins and HSPs are molecular chaperones. Moreover, not all HSPs are derivable from stress. HSPs are structurally diversified by the contribution of various domains having specific roles. HSPs have been grouped, mainly on the basis of their molecular masses, into specific families that include small HSPs (sHSPs)/alpha-crystallins, HSP10s, HSP40s, HSP60s, HSP70s, HSP90s, HSP100s and HSP110s. The names of these major families are historical artefacts with limited information content. Using the current databases, names and proteic domains of many molecular chaperones in different species were analyzed. Although traditional names of HSPs are trivial, it is unrealistic to suggest replacing them, because they are preferred and widely used. Here we suggest that these traditional names be chaperoned, in silico, by a systematic nomenclature. Thus, for example, with the same intent of use of [trioxygen: O3] for ozone, we propose here C7HSP70[Ehsa]ER-P11021 for GRP78 (78 kDa endoplasmic Human molecular chaperone in HSP70 superfamily with P11021 as its accession number in the database of the National Center for Biotechnology Information (NCBI)). The proposed systematic computer-oriented naming and classification method is designed for HSPs and also their partners based on the number of amino acids, domain structure, phylogenetic domain, localization in the cell and accession number as stated in the NCBI. Arabidopsis thaliana was analyzed as a model, because it contains a large number of various HSPs localized in several organelles. Overall, this naming system helps in building, optimizing and managing a novel online database entirely devoted to HSPs. The purported taxonomy, coupled with the newly constructed database, can contribute to studies involving large amounts of stored data on HSPs.  相似文献   

19.
The heat shock proteins (HSPs) family which consists of HSP90, HSP70, and low molecular mass HSPs are involved in chaperone activity. Here, we report the cloning and characterization of HSP90AB gene from orange-spotted grouper, Epinephelus coioides. The full-length of grouper HSP90AB was 727 amino acids and possessed an ATPase domain as well as an evolutionarily conserved molecular chaperone. The HSP90AB-green fluorescent protein fusion protein was evenly distributed in the cytoplasm. Immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR) analyses indicated that the expression of grouper HSP90AB was marginally increased following nodavirus infection. Grouper E. coioides that received HSP90 inhibitor geldanamycin (GA) showed an increase in HSP90AB expression and growth of nodavirus supporting nodavirus replication.  相似文献   

20.
Skår CK  Krüger PG  Bakken V 《Anaerobe》2003,9(6):305-312
Fusobacterium nucleatum is associated with periodontitis in humans, and is a central member of the dental biofilm. Heat shock proteins (HSPs) of many different bacteria have been considered to play important roles during inflammations and infections. We have identified and characterised the HSP60 and HSP70, the Escherichia coli GroEL and DnaK homologues, respectively, in F. nucleatum ATCC 10953. The N-terminal 22 amino acid residues of HSP60 exhibited up to 63.6% identity with members of the HSP60 heat shock protein family of some selected bacterial species, while the N-terminal of 25 residues of HSP70 revealed up to 80% identity with members of the HSP70 family. The subcellular localisation of HSP60 and HSP70 was analysed by immunoblotting of bacterial cell fractions and immunoelectron microscopy of whole cells. HSP60 and HSP70 were localised in the cytosol, associated with membranes and extracellular fractions. These results are consistent with localisation for HSPs found in other micro-organisms, which further lead to the suggestion of a potential role in the pathogenesis of infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号