首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here substantial interference from N-hydroxysuccinimide (NHS) in the bicinchoninic acid (BCA) protein assay. NHS is one of the most commonly used crosslinking agents in bioanalytical sciences, which can lead to serious potential errors in the BCA protein assay based protein estimation if it is present in the protein analyte solution. It was identified to be a reducing substance, which interferes with the BCA protein assay by reducing Cu2+ in the BCA working reagent. The absorbance peak and absorbance signal of NHS were very similar to those of bovine serum albumin (BSA), thereby indicating a similar BCA reaction mechanism for NHS and protein. However, the combined absorbance of NHS and BSA was not additive. The time–response measurements of the BCA protein assay showed consistent single-phase kinetics for NHS and gradually decreasing kinetics for BSA. The error in protein estimation due to the presence of NHS was counteracted effectively by plotting additional BCA standard curve for BSA with a fixed concentration of NHS. The difference between the absorbance values of BSA and BSA with a fixed NHS concentration provided the absorbance contributed by NHS, which was then subtracted from the total absorbance of analyte sample to determine the actual absorbance of protein in the analyte sample.  相似文献   

2.
This study revealed a major interference from sulfo-N-hydroxysuccinimide (sulfo-NHS) in the bicinchoninic acid (BCA) protein assay. Sulfo-NHS, a common reagent used in bioconjugation and analytical biochemistry, exhibited absorbance signals and absorbance peaks at 562 nm, comparable to bovine serum albumin (BSA). However, the combined absorbance of sulfo-NHS and BSA was not strictly additive. The sulfo-NHS interference was suggested to be caused by the reduction of Cu2+ in the BCA Kit’s reagent B (4% cupric sulfate) in a manner similar to that of the protein.  相似文献   

3.
Seven current methods of protein quantitation, Bradford (standard, micro, and 590/450 nm ratio), Lowry, bicinchoninic acid (BCA), UV spectrophotometry at 280 nm, and Quant-iT fluorescence-based determination, were compared with regard to their susceptibility to interferences due to the presence of suspended and not easily detectable clay particles. Bovine serum albumin (BSA) and Na-Wyoming montmorillonite were selected as model protein and reference clay, respectively. Protein-clay suspension mixtures were freshly prepared for each assay to simulate supernatants not completely centrifuged in batch sorption/kinetic experiments. Seven fixed increasing levels of clay (0.0, 0.00725, 0.0145, 0.029, 0.058, 0.145, 0.435 mg ml−1) were mixed with different levels of BSA in an appropriate range for each assay. To ascertain the interfering effect of different levels of clay, the theoretical concentrations of BSA were plotted against the estimated BSA concentrations of the samples, as obtained from the calibration curve of each method. A correct quantitation of the BSA concentration not influenced by clay would be described by a regression line with slope (b) not significantly different from 1 and an intercept (a) not significantly different from zero. At the lowest clay levels (0.00725 mg ml−1) a significant interference was evident for Bradford micro, Bradford 590/450, UV, and fluorescence. The three methods (Bradford standard, Lowry, and BCA) that seemed to show the better performances in the presence of clay after this first screening step also underwent an ANCOVA analysis, with the measured BSA concentrations as dependent variable and the clay concentrations as covariate. The Bradford standard and BCA methods were affected by a clay-dependent interference on BSA quantitation. The Lowry assay was the only method that gave correct estimates of BSA concentrations in the presence of any of the clay levels tested.  相似文献   

4.
Metals such as Cu2+, Fe3+, and Zn2+ are major contributors to the biology of a brain in stages of health, aging, and disease because of their unique effects on both protein structures (misfolding) and oxidative stress. The relationship between metal ions and neurodegenerative diseases is very complicated. Our study highlights how metal ions influence amyloid formation at low pH and on preformed amyloid fibrils. By using thioflavin T assay, ANS fluorescence, Congo red assay, circular dichroism, and microscopy to elucidate the effects of Cu2+, Fe3+, and Zn2+ on goat brain cystatin (GBC) aggregation at low pH. Results showed that Cu2+ and Fe3+ inhibit fibril formation of GBC by promoting amorphous aggregates. However, Zn2+ exclusively promotes fibril formation at low pH, leading to the formation of more ordered aggregates. Furthermore, the combined results of these complementary methods also suggested that Cu2+ and Fe3+ destabilize the β-sheet secondary structure of preformed amyloid fibrils of GBC.  相似文献   

5.
Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins' molar extinction coefficients at 280 nm. For the Bradford assay, the responses (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar, with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines compared with the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed.  相似文献   

6.
The cellular isoform of the prion protein PrPC is a Cu2+-binding cell surface glycoprotein that, when misfolded, is responsible for a range of transmissible spongiform encephalopathies. As changes in PrPC conformation are intimately linked with disease pathogenesis, the effect of Cu2+ ions on the structure and stability of the protein has been investigated. Urea unfolding studies indicate that Cu2+ ions destabilise the native fold of PrPC. The midpoint of the unfolding transition is reduced by 0.73 ± 0.07 M urea in the presence of 1 mol equiv of Cu2+. This equates to an appreciable difference in free energy of unfolding (2.02 ± 0.05 kJ mol− 1 at the midpoint of unfolding). We relate Cu2+-induced changes in secondary structure for full-length PrP(23-231) to smaller Cu2+ binding fragments. In particular, Cu2+-induced structural changes can directly be attributed to Cu2+ binding to the octarepeat region of PrPC. Furthermore, a β-sheet-like transition that is observed when Cu ions are bound to the amyloidogenic fragment of PrP (residues 90-126) is due only to local Cu2+ coordination to the individual binding sites centred at His95 and His110. Cu2+ binding does not directly generate a β-sheet conformation within PrPC; however, Cu2+ ions do destabilise the native fold of PrPC and may make the transition to a misfolded state more favourable.  相似文献   

7.
This article describes a quick and easy method for determining relative binding affinities between proteins and metal ions. The method is based on separating unbound metal ions from metal ions bound to protein by ultrafiltration using microcentrifuge ultrafiltration units. Bovine serum albumin (BSA) was used as the test protein and the relative affinity towards divalent metal ions was found to be Cu2+>Zn2+>Cd2+>Pb2+>Ni2+>Co2+, which corresponds to the relative orders reported in the literature.  相似文献   

8.
It is generally accepted that copper toxicity is a consequence of the generation of reactive oxygen species (ROS) by copper ions via Fenton or Haber-Weiss reactions. Copper ions display high affinity for thiol and amino groups occurring in proteins. Thus, specialized proteins containing clusters of these groups transport and store copper ions, hampering their potential toxicity. This mechanism, however, may be overwhelmed under copper overloading conditions, in which copper ions may bind to thiol groups occurring in proteins non-related to copper metabolism. In this study, we propose that indiscriminate copper binding may lead to damaging consequences to protein structure, modifying their biological functions. Therefore, we treated liver subcellular membrane fractions, including microsomes, with Cu2+ ions either alone or in the presence of ascorbate (Cu2+/ascorbate); we then assayed both copper-binding to membranes, and microsomal cytochrome P450 oxidative system and GSH-transferase activities. All assayed sub-cellular membrane fractions treated with Cu2+ alone displayed Cu2+-binding, which was significantly increased in the presence of Zn2+, Hg2+, Cd2+, Ag+1 and As3+. Treatment of microsomes with Cu2+ in the μM range decreased the microsomal thiol content; in the presence of ascorbate, Cu2+ added in the nM concentrations range induced a significant microsomal lipoperoxidation; noteworthy, increasing Cu2+ concentration to ≥50 μM led to non-detectable lipoperoxidation levels. On the other hand, μM Cu2+ led to the inhibition of the enzymatic activities tested to the same extent in either presence or absence of ascorbate. We discuss the possible significance of indiscriminate copper binding to thiol proteins as a possible mechanism underlying copper-induced toxicity.  相似文献   

9.
Kao SH  Wong HK  Chiang CY  Chen HM 《Proteomics》2008,8(11):2178-2184
To evaluate compatibility of commonly used colorimetric protein assays for 2-DE experiments, we investigated the interfering mechanisms of major 2-DE component(s) in the Lowry-based assay, the Bradford assay and the bicinchoninic acid (BCA) assay. It was found that some 2-DE components did not directly interfere with the assays' color development reaction, but possibly influenced the quantitation results by interacting with proteins. Generally, simultaneous presence of 2-DE components in the samples demonstrated a cooperative rather than additive interference. Interference by reductants in the Lowry-based assay and the BCA assay were too prominent and could not be completely eliminated by either the reported alkylation procedure or the water dilution procedure. The Bradford assay however, presented a more suitable method for quantitating 2-DE samples because it was less interfered by most 2-DE components. Furthermore, despite slightly compromising protein solubility, utilization of reductant free 2-DE sample buffers conferred application of the Lowry-based and BCA assays in the 2-DE experiments.  相似文献   

10.
In the current study, the quantification of different model proteins in the presence of typical aqueous two-phase system components was investigated by using the Bradford and bicinchoninic acid (BCA) assays. Each phase-forming component above 1 and 5 wt% had considerable effects on the protein quantification in both assays, respectively, resulting in diminished protein recoveries/absorption values by increasing poly(ethylene glycol) (PEG)/salt concentration and PEG molecular weight. Therefore, a convenient dilution of both components (up to 1 and 5 wt%) before protein quantification is recommended in both assays, respectively, where the BCA assay is favored in comparison with the Bradford assay.  相似文献   

11.
There is a large body of evidence that divalent metal ions, particularly copper, might play a role in several protein folding pathologies like Alzheimer’s disease, Parkinson’s disease or the prion diseases. However, contribution of metal ions on pathogenesis and their molecular influence on the formation of amyloid structures is not clear. Therefore, the general influence of metals on the formation of amyloids is still controversially discussed. We have utilized the well established system of yeast Sup35p-NM to investigate the role of three different metal ions, Cu2+, Mn2+ and Zn2+, on amyloidogenesis. Recently, it has been shown that the prion determining region NM of the Saccharomyces cerevisiae prion protein Sup35p, which is responsible for the yeast prion phenotype [PSI+], specifically binds Cu2+ ions. We further characterized the affinity of NM for Cu2+, which were found to be comparable to that of other amyloidogenic proteins like the mammalian prion protein PrP. The specific binding sites could be located in the aminoterminal N-region which is known to initiate formation of amyloidogenic nuclei. In the presence of Cu2+, fibril nucleation was significantly delayed, probably due to influences of copper on the oligomeric ensemble of soluble Sup35p-NM, since Cu2+ altered the tertiary structure of soluble Sup35p-NM, while no influences on fibril elongation could be detected. The secondary structure of soluble or fibrous protein and the morphology of the fibrils were apparently not altered when assembled in presence of Cu2+. In contrast, Mn2+ and Zn2+ did not bind to Sup35p-NM and did not exhibit significant effects on the formation of NM amyloid fibrils.  相似文献   

12.
Myelin basic protein (MBP) is predominantly found in the membranes of the myelin sheath of the central nervous system and is involved in important protein-protein and protein-lipid interactions in vivo and in vitro. Furthermore, divalent transition metal ions, especially Zn2+ and Cu2+, seem to directly affect the MBP-mediated formation and stabilization of the myelin sheath of the central nervous system. MBP belongs to the realm of intrinsically disordered proteins, and only fragmentary information is available regarding its partial structure(s) or supramolecular arrangements. Here, using standard continuous wave and modern pulse electron paramagnetic resonance methods, as well as dynamic light scattering, we demonstrate the uptake and specific coordination of two Cu2+ atoms or one Zn2+ atom per MBP molecule in solution. In the presence of phosphates, further addition of divalent metal ions above a characteristic threshold of four Cu2+ atoms or two Zn2+ atoms per MBP molecule leads to the formation of large MBP aggregates within the protein solution. In vivo, MBP-MBP interactions may thus be mediated by divalent cations.  相似文献   

13.
In the present study, the effect of copper (Cu2+) and lead (Pb2+) ions on the growth and lipid composition of various parts of the fern, Matteuccia sthruthiopteris, was examined. Plants were incubated in the presence or absence of 1, 10, 100 μM of Cu(NO3)2 or Pb(NO3)2. Cu2+ and Pb2+ ions at concentrations of 1 and 10 μM caused an increased growth of the roots and leaves. A higher concentration of Pb2+ did not show any effect on growth, whereas that of Cu2+ slowed down the growth of the whole plants. The roots accumulated more than 700 μg of Cu2+ and 400 μg of Pb2+ per 1 g dry weight when the plants were incubated with the higher concentrations of metals, whereas in the leaves the concentration of Cu2+ was much lower and did not exceed 12 μg/g dry weight. No accumulation of Pb2+ ions by leaves was detected. The lipid composition of photosynthetic leave tissues was shown to be affected by the presence of metal ions in the root medium at either concentration studied. Various changes in lipid classes were noted as responsive reactions of M. sthruthiopteris to the heavy metal ions in nutrient medium. Cu2+ ions decreased the content of total lipids, total phospholipids, and individual phosphatidylcholines and phosphatidylethanolamines, whereas Pb2+ ions caused a decrease in the content of total lipids and glycolipids. Changes in the lipid composition were more pronounced in the mature leaves than in the scrolls of the studied fern.  相似文献   

14.
Possible roles of cell wall and cytoplasmic peptides in the tolerance of cells to Cu2+ and Cd2+ ions were studied in suspension-cultured cells of tomato (Lycopersicon esculentum L. cv. Palace). Cu2+ and Cd2+ ions inhibited growth of wild type cells at concentrations more than 100 and 200 μM, respectively. Tomato cells readily developed tolerance to Cd2+ ions up to 1 mM but not to Cu2+ ions, after repeated subculturings in the presence of the respective ions. Such a metal-specific adaptation of cells was not due to the difference in the total uptakes between Cd2+ and Cu2+ ions by cells. Wild-type cells accumulated Cd2+ preferentially into the cytoplasmic peptide fraction and Cu2+ into the cell-wall fraction, when grown under the subtoxic metal conditions. Under excess metal conditions, Cd-tolerant cells produced greater amounts of Cd-binding peptides in the cytoplasm and retained lesser amounts of Cd2+ ions in the cell wall than did wild-type cells. In contrast, tomato cells grown in the presence of Cu2+ ions synthesized no detectable amounts of Cu-binding peptides in the cytoplasm and retained most of the Cu2+ in the cell-wall fraction, irrespective of cell lines. These results suggested that the cytoplasmic peptides rather than cell wall properties have a primary role in the response of tomato cells to excess metal environments.  相似文献   

15.
《Free radical research》2013,47(4):205-218
In our search to establish a reference ·OH production system with respect to which the reactivity of copper(II) complexes could then be tested, the influence of free Cu2+ ions on the Cu+/H2O2 reaction has been investigated.

This influence depends on the CCu2+/CCu+ ratio. At low Cu2+ concentrations, ·OH damage to various detector molecules decreases with increasing Cu2+ concentrations until CCu2+/CCu+ reaches unity. Above this value, ·OH damage increases sharply until CCu2+/CCu+ becomes equal to 5 with salicylate and 2 with deoxyribose, ratios for which the protective effect of Cu2+ cancels. Finally, at higher concentrations, Cu2+ ions logically add their own ·OH production to that normally expected from Cu+ ions. The possible origin of this unprecedented alternate effect has been discussed. The possible influence of Cu+ ions on the generation of ·OH radicals by water gamma radiolysis has also been tested and, as already established for Cu2+ in a previous work, shown to be nonexistent. This definitely confirms that either form of ionised copper cannot scavenge ·OH radicals in the absence of a Iigand.  相似文献   

16.
Magic-angle spinning solid-state NMR measurements of 15N longitudinal paramagnetic relaxation enhancements (PREs) in 13C,15N-labeled proteins modified with Cu2+-chelating tags can yield multiple long-range electron-nucleus distance restraints up to ~20 Å (Nadaud et al. in J Am Chem Soc 131:8108–8120, 2009). Using the EDTA-Cu2+ K28C mutant of B1 immunoglobulin binding domain of protein G (GB1) as a model, we investigate the effects on such measurements of intermolecular electron-nucleus couplings and intrinsic metal binding sites, both of which may potentially complicate the interpretation of PRE data in terms of the intramolecular protein fold. To quantitatively assess the influence of intermolecular 15N-Cu2+ interactions we have determined a nearly complete set of longitudinal 15N PREs for a series of microcrystalline samples containing ~10, 15 and 25 mol percent of the 13C,15N-labeled EDTA-Cu2+-tagged protein diluted in a matrix of diamagnetic natural abundance GB1. The residual intermolecular interactions were found to be minor on the whole and account for only a fraction of the relatively small but systematic deviations observed between the experimental 15N PREs and corresponding values calculated using protein structural models for residues furthest removed from the EDTA-Cu2+ tag. This suggests that these deviations are also caused in part by other factors not related to the protein structure, such as the presence in the protein of intrinsic secondary sites capable of binding Cu2+ ions. To probe this issue we performed a Cu2+ titration study for K28C-EDTA GB1 monitored by 2D 15N-1H solution-state NMR, which revealed that while for Cu2+:protein molar ratios of ≤ 1.0 Cu2+ binds primarily to the high-affinity EDTA tag, as anticipated, at even slightly super-stoichiometric ratios the Cu2+ ions can also associate with side-chains of aspartate and glutamate residues. This in turn is expected to lead to enhanced PREs for residues located in the vicinity of the secondary Cu2+ binding sites, and indeed many of these residues were ones found to display the elevated longitudinal 15N PREs in the solid phase.  相似文献   

17.
Iron and copper ions, in their unbound form, may lead to the generation of reactive oxygen species via Haber–Weiss and/or Fenton reactions. In addition, it has been shown that copper ions can irreversibly and non-specifically bind to thiol groups in proteins. This non-specific binding property has not been fully addressed for iron ions. Thus, the present study compares both the pro-oxidant and the non-specific binding properties of Fe3+ and Cu2+, using rat liver cytosol and microsomes as biological systems. Our data show that, in the absence of proteins, Cu2+/ascorbate elicited more oxygen consumption than Fe3+/ascorbate under identical conditions. Presence of cytosolic and microsomal protein, however, differentially altered oxygen consumption patterns. In addition, Cu2+/ascorbate increased microsomal lipid peroxidation and decreased cytosolic and microsomal content of thiol groups more efficiently than Fe3+/ascorbate. Finally, Fe3+/ascorbate and Cu2+/ascorbate inhibited in different ways cytosolic and microsomal glutathione S-transferase (GST) activities, which are differentially sensitive to oxidants. Moreover, in the absence of ascorbate, only Cu2+ decreased the content of cytosolic and microsomal thiol groups and inhibited cytosolic and microsomal GST activities. Catechin partially prevented the damage to thiol groups elicited by Fe3+/ascorbate and Cu2+/ascorbate but not by Cu2+ alone. N-Acetylcysteine completely prevented the damage elicited by Cu2+/ascorbate, Fe3+/ascorbate and Cu2+ alone. N-Acetylcysteine also completely reversed the damage to thiol groups elicited by Fe3+/ascorbate, partially reversed that of Cu2+/ascorbate but failed to reverse the damage promoted by Cu2+ alone. Our data are discussed in terms to the potential damage that the accumulation of iron and copper ions can promote in biological systems.  相似文献   

18.
Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions (Cu+ and Cu2+), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped Cu2O and CuO crystals were prepared to test the role of the two different ions, Cu+ and Cu2+, respectively. The Cu2O crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The Cu2O crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. Cu2O crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit Cu2O-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of Cu+ ions in the vascular system, where Cu+ induces autophagy while Cu2+ has no detected effect.  相似文献   

19.
The well-established killing of bacteria by copper surfaces, also called contact killing, is currently believed to be a combined effect of bacterial contact with the copper surface and the dissolution of copper, resulting in lethal bacterial damage. Iron can similarly be released in ionic form from iron surfaces and would thus be expected to also exhibit contact killing, although essentially no contact killing is observed by iron surfaces. However, we show here that the exposure of bacteria to iron surfaces in the presence of copper ions results in efficient contact killing. The process involves reduction of Cu2+ to Cu+ by iron; Cu+ has been shown to be considerably more toxic to cells than Cu2+. The specific Cu+ chelator, bicinchoninic acid, suppresses contact killing by chelating the Cu+ ions. These findings underline the importance of Cu+ ions in the contact killing process and infer that iron-based alloys containing copper could provide novel antimicrobial materials.  相似文献   

20.
Binding of water to "types I and II" Cu2+ in proteins   总被引:5,自引:0,他引:5  
Water proton spin-lattice relaxation times have been measured at 30MHz between 280 – 333 K in aqueous solutions of proteins containing Type I Cu2+ ions (azurin and umecyanin) and Type II Cu2+ ions (benzylamine oxidase and superoxide dismutase). These measurements show that Type II Cu2+ is accessible to exchangeable water molecules but Type I is not. This behaviour is consistent with the EPR and optical properties of these ions and their likely biochemical functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号