首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular generation of reactive oxygen species, together with the thioredoxin and glutathione systems, is thought to participate in redox signaling in mammalian cells. The activity of thioredoxin is dependent on the redox status of thioredoxin reductase (TR), the activity of which in turn is dependent on a selenocysteine residue. Two mammalian TR isozymes (TR2 and TR3), in addition to that previously characterized (TR1), have now been identified in humans and mice. All three TR isozymes contain a selenocysteine residue that is located in the penultimate position at the carboxyl terminus and which is encoded by a UGA codon. The generation of reactive oxygen species in a human carcinoma cell line was shown to result in both the oxidation of the selenocysteine in TR1 and a subsequent increase in the expression of this enzyme. These observations identify the carboxyl-terminal selenocysteine of TR1 as a cellular redox sensor and support an essential role for mammalian TR isozymes in redox-regulated cell signaling.  相似文献   

2.
The thioredoxin system of Helicobacter pylori   总被引:4,自引:0,他引:4  
This paper describes the purification of thioredoxin reductase (TR) and the characterization, purification, and cloning of thioredoxin (Trx) from Helicobacter pylori. Purification, amino acid sequence analysis, and molecular cloning of the gene encoding thioredoxin revealed that it is a 12-kDa protein which possesses the conserved redox active motif CGPC. The gene encoding Trx was amplified by polymerase chain reaction and inserted into a pET expression vector and used to transform Escherichia coli. Trx was overexpressed by induction with isopropyl-1-thio-beta-D-galactopyranoside as a decahistidine fusion protein and was recovered from the cytoplasm as a soluble and active protein. The redox activity of this protein was characterized using several mammalian proteins of different architecture but all containing disulfide bonds. H. pylori thioredoxin efficiently reduced insulin, human immunoglobulins (IgG/IgA/sIgA), and soluble mucin. Subcellular fractionation analysis of H. pylori revealed that thioredoxin was associated largely with the cytoplasm and inner membrane fractions of the cell in addition to being recovered in the phosphate-buffered saline-soluble fraction of freshly harvested cells. H. pylori TR was purified to homogeneity by chromatography on DEAE-52, Cibacron blue 3GA, and 2',5'-ADP-agarose. Gel filtration revealed that the native TR had a molecular mass of 70 kDa which represented a homodimer composed of two 35-kDa subunits, as determined by SDS-polyacrylamide gel electrophoresis. H. pylori TR (NADPH-dependent) efficiently catalyzed the reduction of 5,5'-dithiobis(nitrobenzoic acid) in the presence of either native or recombinant H. pylori Trx. H. pylori Trx behaved also as a stress response element as broth grown bacteria secreted Trx in response to chemical, biological, and environmental stresses. These observations suggest that Trx may conceivably assist H. pylori in the process of colonization by inducing focal disruption of the oligomeric structure of mucin while rendering host antibody inactive through catalytic reduction.  相似文献   

3.
Antioxidant systems are fundamental components of host–parasite interactions, and often play a key role in parasite survival. Here, we report the cloning, heterologous expression, and characterization of a thioredoxin glutathione reductase (TGR) from Fasciola hepatica. The deduced polypeptide sequence of the cloned open reading frame (ORF) confirmed the experimental N-terminus previously determined for a native F. hepatica TGR showing thioredoxin reductase (TR) activity. The sequence revealed the presence of a fusion between a glutaredoxin (Grx) and a TR domain, similar to that previously reported in Schistosoma mansoni and Echinococcus granulosus. The F. hepatica TGR sequence included an additional redox active center (ACUG; U being selenocysteine) located at the C-terminus. The addition of a recombinant selenocysteine insertion sequence (SECIS) element in the Escherichia coli expression vector, or the substitution of the native selenocysteine by a cysteine, indicated the relevance of this unusual amino acid residue for the activity of F. hepatica TGR. Rabbit vaccination with recombinant F. hepatica TGR reduced the worm burden by 96.7% following experimental infection, further supporting the relevance of TGR as a promising target for anti Fasciola treatments.  相似文献   

4.

Background  

Thioredoxin reductase (TR) is a redox active protein involved in many cellular processes as part of the thioredoxin system. Presently there are three recognised forms of mammalian thioredoxin reductase designated as TR1, TR3 and TGR, that represent the cytosolic, mitochondrial and novel forms respectively. In this study we elucidated the genomic organisation of the mouse (Txnrd1) and human thioredoxin reductase 1 genes (TXNRD1) through library screening, restriction mapping and database mining.  相似文献   

5.
6.
The manipulation of cellular redox status has emerged as a promising therapeutic strategy to prevent uncontrolled inflammatory response. Thioredoxin is an important regulator of cellular redox homeostasis, which catalyzes the reduction of disulfide bonds. Human thioredoxin, originally identified as a secretory protein ADF, has been implicated in a wide variety of redox regulations in both intracellular and extracellular compartments. This review includes a summary of the evidence available supporting the employment of the beneficial properties of thioredoxin to combat inflammation, an evaluation of the potential of redox-based therapy for the treatment of inflammatory diseases, and a discussion on the conceptual model of a redox-sensitive signaling complex, Redoxisome, consisting of thioredoxin and its redox partners.  相似文献   

7.
Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes.  相似文献   

8.
9.
The human DnaJ homolog Hdj2 is a cochaperone containing a cysteine-rich zinc finger domain. We identified a specific interaction of Hdj2 with the cellular redox enzyme thioredoxin using a yeast two-hybrid assay and a coimmunoprecipitation assay, thereby investigating how the redox environment of the cell regulates Hdj2 function. In reconstitution experiments with Hsc70, we found that treatment with H2O2 caused the oxidative inactivation of Hdj2 cochaperone activity. Hdj2 inactivation paralleled the oxidation of cysteine thiols and concomitant release of coordinated zinc, suggesting a role of cysteine residues in the zinc finger domain of Hdj2 as a redox sensor of chaperone-mediated protein-folding machinery. H2O2-induced negative regulation of Hdj2 cochaperone activity was also confirmed in mammalian cells using luciferase as a foreign reporter cotransfected with Hsc70 and Hdj2. The in vivo oxidation of cysteine residues in Hdj2 was detected only in thioredoxin-knockdown cells, implying that thioredoxin is involved in the in vivo reduction. The oxidative inactivation of Hdj2 was reversible. Wild-type thioredoxin notably recovered the oxidatively inactivated Hdj2 activity accompanied by the reincorporation of zinc, whereas the catalytically inactive mutant thioredoxin (Cys32Ser/Cys35Ser) did not. Taken together, we propose that oxidation and reduction reversibly regulate Hdj2 function in response to the redox states of the cell.  相似文献   

10.
Platyhelminth parasites are a major health problem in developing countries. In contrast to their mammalian hosts, platyhelminth thiol-disulfide redox homeostasis relies on linked thioredoxin-glutathione systems, which are fully dependent on thioredoxin-glutathione reductase (TGR), a promising drug target. TGR is a homodimeric enzyme comprising a glutaredoxin domain and thioredoxin reductase (TR) domains with a C-terminal redox center containing selenocysteine (Sec). In this study, we demonstrate the existence of functional linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of Echinococcus granulosus, the platyhelminth responsible for hydatid disease. The glutathione reductase (GR) activity of TGR exhibited hysteretic behavior regulated by the [GSSG]/[GSH] ratio. This behavior was associated with glutathionylation by GSSG and abolished by deglutathionylation. The K(m) and k(cat) values for mitochondrial and cytosolic thioredoxins (9.5 microm and 131 s(-1), 34 microm and 197 s(-1), respectively) were higher than those reported for mammalian TRs. Analysis of TGR mutants revealed that the glutaredoxin domain is required for the GR activity but did not affect the TR activity. In contrast, both GR and TR activities were dependent on the Sec-containing redox center. The activity loss caused by the Sec-to-Cys mutation could be partially compensated by a Cys-to-Sec mutation of the neighboring residue, indicating that Sec can support catalysis at this alternative position. Consistent with the essential role of TGR in redox control, 2.5 microm auranofin, a known TGR inhibitor, killed larval worms in vitro. These studies establish the selenium- and glutathione-dependent regulation of cytosolic and mitochondrial redox homeostasis through a single TGR enzyme in platyhelminths.  相似文献   

11.
12.
Thioredoxin and related proteins in procaryotes   总被引:15,自引:0,他引:15  
Thioredoxin is a small (Mr 12,000) ubiquitous redox protein with the conserved active site structure: -Trp-Cys-Gly-Pro-Cys-. The oxidized form (Trx-S2) contains a disulfide bridge which is reduced by NADPH and thioredoxin reductase; the reduced form [Trx(SH)2] is a powerful protein disulfide oxidoreductase. Thioredoxins have been characterized in a wide variety of prokaryotic cells, and generally show about 50% amino acid homology to Escherichia coli thioredoxin with a known three-dimensional structure. In vitro Trx-(SH)2 serves as a hydrogen donor for ribonucleotide reductase, an essential enzyme in DNA synthesis, and for enzymes reducing sulfate or methionine sulfoxide. E. coli Trx-(SH)2 is essential for phage T7 DNA replication as a subunit of T7 DNA polymerase and also for assembly of the filamentous phages f1 and M13 perhaps through its localization at the cellular plasma membrane. Some photosynthetic organisms reduce Trx-S2 by light and ferredoxin; Trx-(SH)2 is used as a disulfide reductase to regulate the activity of enzymes by thiol redox control. Thioredoxin-negative mutants (trxA) of E. coli are viable making the precise cellular physiological functions of thioredoxin unknown. Another small E. coli protein, glutaredoxin, enables GSH to be hydrogen donor for ribonucleotide reductase or PAPS reductase. Further experiments with molecular genetic techniques are required to define the relative roles of the thioredoxin and glutaredoxin systems in intracellular redox reactions.  相似文献   

13.
The effects of N-ethylmaleimide (NEM) and 1,4-dithioerythritol (DTE) on the level of oxidative modification of proteins, the state of glutathione and thioredoxin systems and the cellular redox status have been investigated in HBL-100 cells (breast epithelial cells). Breast epithelial cells cultivated in the presence of NEM were characterized by the decreased redox status, increased glutathione reductase activity, and increased concentrations of products of irreversible oxidative modification of proteins and amino acids. Cell cultivation in the presence of DTE shifted the redox status towards reduction processes and increased reversible protein modification by glutathionylation. The proposed model of intracellular redox modulation may be used in the development of new therapeutic approaches to treat diseases accompanied by impaired redox homeostasis (e.g. oncologic, inflammatory, cardiovascular and neurodegenerative disease).  相似文献   

14.
Redox regulation has been shown to be of increasing importance for many cellular processes. Here, redox homeostasis was addressed in Aspergillus nidulans, an important model organism for fundamental biological questions such as development, gene regulation or the regulation of the production of secondary metabolites. We describe the characterization of a thioredoxin system from the filamentous fungus A. nidulans. The A. nidulans thioredoxin A (AnTrxA) is an 11.6-kDa protein with a characteristic thioredoxin active site motif (WCGPC) encoded by the trxA gene. The corresponding thioredoxin reductase (AnTrxR), encoded by the trxR gene, represents a homodimeric flavoprotein with a native molecular mass of 72.2 kDa. When combined in vitro, the in Escherichia coli overproduced recombinant proteins AnTrxA and AnTrxR were able to reduce insulin and oxidized glutathione in an NADPH-dependent manner indicating that this in vitro redox system is functional. Moreover, we have created a thioredoxin A deletion strain that shows decreased growth, an increased catalase activity, and the inability to form reproductive structures like conidiophores or cleistothecia when cultivated under standard conditions. However, addition of GSH at low concentrations led to the development of sexual cleistothecia, whereas high GSH levels resulted in the formation of asexual conidiophores. Furthermore, by applying the principle of thioredoxin-affinity chromatography we identified several novel putative targets of thioredoxin A, including a hypothetical protein with peroxidase activity and an aldehyde dehydrogenase.  相似文献   

15.
16.
Abstract Thioredoxin is a small ( M r 12,000) ubiquitous redox protein with the conserved active site structure: -Trp-Cys-Gly-Pro-Cys-. The oxidized form (Trx-S2) contains a disulfide bridge which is reduced by NADPH and thioredoxin reductase; the reduced form [Trx(SH)2] is a powerful protein disulfide oxidoreductase. Thioredoxins have been characterized in a wide variety of prokaryotic cells, and generally show about 50% amino acid homology to Escherichia coli thioredoxin with a known three-dimensional structure. In vitro Trx-(SH)2 serves as a hydrogen donor for ribonucleotide reductase, an essential enzyme in DNA synthesis, and for enzymes reducing sulfate or methionine sulfoxide. E. coli Trx-(SH)2 is essential for phage T7 DNA replication as a subunit of T7 DNA polymerase and also for assembly of the filamentous phages f1 and M13 perhaps through its localization at the cellular plasma membrane. Some photosynthetic organisms reduce Trx-S2 by light and ferrodoxin; Trx-(SH)2 is used as a disulfide reductase to regulate the activity of enzymes by thiol redox control.
Thioredoxin-negative mutants ( trxA ) of E. coli are viable making the precise cellular physiological functions of thioredoxin unknown. Another small E. coli protein, glutaredoxin, enables GSH to be hydrogen donor for ribonucleotide reductase or PAPS reductase. Further experiments with molecular genetic techniques are required to define the relative roles of the thioredoxin and glutaredoxin systems in intracellular redox reactions.  相似文献   

17.
Regulation of the balance of matrix metalloproteinase-2 (MMP-2) and its tissue inhibitor (TIMP-2) by thioredoxin (Trx) was investigated in human dermal fibroblasts. Expression and secretion of Trx and Trx reductase 1 (TR1) was increased after ultraviolet (UV) A irradiation. A significant increase in proMMP-2 activity and a decrease of TIMP-2 activity in supernatants of UVA-irradiated fibroblasts were observed in gelatin and reverse zymography compared to non-irradiated fibroblasts. Removal of Trx or TR1 by immunoprecipitation diminished these changes in proMMP-2 activity. Incubation with 5, 5'-dithio-bis-2-nitrobenzoic acid (DTNB) also suppressed these changes. Incubation with recombinant Trx or TR decreased TIMP-2 activity and increased MMP-2 activity. UVA-irradiated fibroblasts, transiently transfected with a dominant-negative mutant or wild-type Trx, showed down- or upregulation of proMMP-2 activities, respectively, without significant change of protein amount. In conclusion, thioredoxin secreted by UVA irradiation is involved in the regulation of MMP-2 and TIMP-2 activities through its redox activity in human dermal fibroblasts.  相似文献   

18.
谷氧还蛋白系统及其对细胞氧化还原态势的调控   总被引:1,自引:0,他引:1  
细胞内氧化还原调控主要是由谷氧还蛋白系统和硫氧还蛋白系统完成。谷氧还蛋白属于硫氧还蛋白超家族,广泛分布在各种生物体内。作为一种巯基转移酶,它能够催化巯基.二硫键交换反应或者还原蛋白质谷胱甘肽二硫化物,以维持胞内的氧化还原态势。谷氧蛋白系统参与氧化胁迫、蛋白修饰、信号转导、细胞调亡和细胞分化等多种生物过程。对其体内作用靶蛋白的研究,有助于阐明谷氧还蛋白在整个细胞氧化还原网络的重要调控作用。  相似文献   

19.
To mimic the active sites (Trp-Cys-Gly-His-Cys) contained in two thioredoxin-like domains of the eukaryotic enzyme protein disulfide-isomerase (PDI, EC 5.3.4.1), the Pro-34 residue of Escherichia coli thioredoxin (Trx) was replaced by His using site-directed mutagenesis. The mutant P34H Trx was isolated in high yield and was stable. The equilibrium between Trx and NADPH in the thioredoxin reductase (TR)-catalyzed reaction revealed that the redox potential (E'o) or P34H Trx at pH 7.0 was -235 mV as compared with -270 mV for wild type (wt) Trx. The higher E'o value made P34H Trx more similar to PDI and contributed to prominent changes in Trx functions, e.g. improved activity with TR and slower reduction of protein disulfides. Compared to wt Trx, the P34H oxidized Trx was about twice as good a substrate for TR from E. coli and four times as efficient with calf thymus TR. A novel fluorimetric assay permitted direct recording of the reaction between insulin disulfide(s) and reduced Trx. At pH 8 and 15 degrees C, second-order rate constants for wt Trx of 2 x 10(4) M-1 s-1 and for P34H Trx of 3 x 10(3) M-1 s-1 were obtained, and a different equilibrium was observed consistent with differences in E'o values. Also when the reduction mechanism of insulin was examined using NADPH and TR, P34H Trx behaved differently from wt Trx or PDI. P34H Trx may be useful as an analogue of PDI for disulfide formation in vivo and in vitro.  相似文献   

20.
The interdependent and finely tuned balance between the well-established redox-based modification, S-nitrosylation, and its counteractive mechanism of S-nitrosothiol degradation, i.e., S-denitrosylation of biological protein or non-protein thiols defines the cellular fate in the context of redox homeostasis. S-nitrosylation of cysteine residues by S-nitrosoglutathione, S-nitroso-L-cysteine-like physiological and S-nitroso-L-cysteine ethyl ester-like synthetic NO donors inactivate Caspase-3, 8, and 9, thereby hindering their apoptotic activity. However, spontaneous restoration of their activity upon S-denitrosylation of S-nitrosocaspases into their reduced, free thiol active states, aided by the members of the ubiquitous cellular redoxin (thioredoxin/ thioredoxin reductase/ NADPH) and low molecular weight dithiol (lipoic acid/ lipoamide dehydrogenase/ dihydrolipoic acid/ NADPH) systems imply a direct relevance to their proteolytic activities and further downstream signaling cascades. Additionally, our previous and current findings offer crucial insight into the concept of redundancy between thioredoxin and lipoic acid systems, and the redox-modulated control of the apoptotic and proteolytic activity of caspases, triggering their cyto- and neurotoxic effects in response to nitro-oxidative stress. Thus, this might lay the foundation for the exogenous introduction of precise and efficient NO or related donor drug delivery systems that can directly participate in catering to the S-(de)-nitrosylation-mediated functional outcomes of the cysteinyl proteases in pathophysiological settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号