首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured the nucleotide turnover rate of myosin in tarantula leg muscle fibers by observing single turnovers of the fluorescent nucleotide analog 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate, as monitored by the decrease in fluorescence when 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate (mantATP) is replaced by ATP in a chase experiment. We find a multiexponential process with approximately two-thirds of the myosin showing a very slow nucleotide turnover time constant (∼ 30 min). This slow-turnover state is termed the super-relaxed state (SRX). If fibers are incubated in 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-diphosphate and chased with ADP, the SRX is not seen, indicating that trinucleotide-relaxed myosins are responsible for the SRX. Phosphorylation of the myosin regulatory light chain eliminates the fraction of myosin with a very long lifetime. The data imply that the very long-lived SRX in tarantula fibers is a highly novel adaptation for energy conservation in an animal that spends extremely long periods of time in a quiescent state employing a lie-in-wait hunting strategy. The presence of the SRX measured here correlates well with the binding of myosin heads to the core of the thick filament in a structure known as the “interacting-heads motif,” observed previously by electron microscopy. Both the structural array and the long-lived SRX require relaxed filaments or relaxed fibers, both are lost upon myosin phosphorylation, and both appear to be more stable in tarantula than in vertebrate skeletal or vertebrate cardiac preparations.  相似文献   

2.
Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (∼80 Å) to HNF4α, binding with high affinity Kd ∼250–300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction altered protein secondary structure. Finally, L-FABP potentiated transactivation of HNF4α in COS7 cells. Taken together, these data suggest that L-FABP provides a signaling path to HNF4α activation in the nucleus.  相似文献   

3.

Background

Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.

Methods

Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.

Results

The enzyme only had one binding site. At 25 °C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2 nM, 0.058 nM− 1 [Ag]; and 43.5 nM, 0.052 nM− 1 [Au] and these decreased to 11.2 nM, 0.041 nM− 1 [Ag]; and 24.2 nM, 0.039 nM− 1 [Au] at 30 °C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11 nm [Ag] and 2.26 nm [Au] from a single surface tryptophan residue.

Conclusions

The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.

General significance

The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.  相似文献   

4.
(1) The Mg2+-induced low-affinity nucleotide binding by (Na+ + K+)-ATPase has been further investigated. Both heat treatment (50–65°C) and treatment with N-ethylmaleimide reduce the binding capacity irreversibly without altering the Kd value. The rate constant of inactivation is about one-third of that for the high-affinity site and for the (Na+ + K+)-ATPase activity. (2) Thermodynamic parameters (ΔH° and ΔS°) for the apparent affinity in the ATPase reaction (Km ATP) and for the true affinity in the binding of AdoPP[NH]P (Kd and Ki) differ greatly in sign and magnitude, indicating that one or more reaction steps following binding significantly contribute to the Km value, which thus is smaller than the Kd value. (3) Ouabain does not affect the capacity of low-affinity nucleotide binding, but only increases the Kd value to an extent depending on the nucleotide used. GTP and CTP appear to be most sensitive, ATP and ADP intermediately sensitive and AdoPP[NH]P and least sensitive to ouabain. Ouabain reduces the high-affinity nucleotide binding capacity without affecting the Kd value. (4) The nucleotide specificity of low-affinity binding site is the same for binding (competition with AdoPP[NH]P) and for the ATPase activity (competition with ATP): AdoPP[NH]P > ATP > ADP > AMP. (5) The low-affinity nucleotide binding capacity is preserved in the ouabain-stabilized phosphorylated state, and the Kd value is not increased more than by ouabain alone. (6) It is inferred that the low-affinity site is Iocated on the enzyme, more specifically its α-subunit, and not on the surrounding phospholipids. It is situated outside the phosphorylation centre. The possible functional role of the low-affinity binding is discussed.  相似文献   

5.
Human arginase I is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to generate l-ornithine and urea. We demonstrate that N-hydroxy-l-arginine (NOHA) binds to this enzyme with Kd = 3.6 μM, and nor-N-hydroxy-l-arginine (nor-NOHA) binds with Kd = 517 nM (surface plasmon resonance) or Kd ≈ 50 nM (isothermal titration calorimetry). Crystals of human arginase I complexed with NOHA and nor-NOHA afford 2.04 and 1.55 Å resolution structures, respectively, which are significantly improved in comparison with previously-determined structures of the corresponding complexes with rat arginase I. Higher resolution structures clarify the binding interactions of the inhibitors. Finally, the crystal structure of the complex with l-lysine (Kd = 13 μM) is reported at 1.90 Å resolution. This structure confirms the importance of hydrogen bond interactions with inhibitor α-carboxylate and α-amino groups as key specificity determinants of amino acid recognition in the arginase active site.  相似文献   

6.
7.
Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN3O2S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near −1.0 V vs. SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 × 104-2.3 × 105 M−1. The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen (1O2) as the reactive species.  相似文献   

8.
The superfamily 1 bacterial helicase PcrA has a role in the replication of certain plasmids, acting with the initiator protein (RepD) that binds to and nicks the double-stranded origin of replication. PcrA also translocates single-stranded DNA with discrete steps of one base per ATP hydrolyzed. Individual rate constants have been determined for the DNA helicase PcrA ATPase cycle when bound to either single-stranded DNA or a double-stranded DNA junction that also has RepD bound. The fluorescent ATP analogue 2′(3′)-O-(N-methylanthraniloyl)ATP was used throughout all experiments to provide a complete ATPase cycle for a single nucleotide species. Fluorescence intensity and anisotropy stopped-flow measurements were used to determine rate constants for binding and release. Quenched-flow measurements provided the kinetics of the hydrolytic cleavage step. The fluorescent phosphate sensor MDCC-PBP was used to measure phosphate release kinetics. The chemical cleavage step is the rate-limiting step in the cycle and is essentially irreversible and would result in the bound ATP complex being a major component at steady state. This cleavage step is greatly accelerated by bound DNA, producing the high activation of this protein compared to the protein alone. The data suggest the possibility that ADP is released in two steps, which would result in bound ADP also being a major intermediate, with bound ADP·Pi being a very small component. It therefore seems likely that the major transition in structure occurs during the cleavage step, rather than Pi release. ATP rebinding could then cause reversal of this structural transition. The kinetic mechanism of the PcrA ATPase cycle is very little changed by potential binding to RepD, supporting the idea that RepD increases the processivity of PcrA by increasing affinity to DNA rather than affecting the enzymatic properties per se.  相似文献   

9.
The binding of TNP-ATP (2 or 3-O-(2,4,6-trinitrophenyl)-ATP) to cytochrome c oxidase (COX) from bovine heart and liver and to the two-subunit COX of Paracoccus denitrificans was measured by its change of fluorescence. Three binding sites, two with high (dissociation constant Kd = 0.2 µM) and one with lower affinity (Kd = 0.9 µM), were found at COX from bovine heart and liver, while the Paracoccus enzyme showed only one binding site (Kd = 3.6 µM). The binding of [35S]ATPaS was measured by equilibrium dialysis and revealed seven binding sites at the heart enzyme (Kd = 7.5 µM) and six at the liver enzyme (Kd = 12 µM). The Paracoccus enzyme had only one binding site (Kd = 16 µM). The effect of variable intraliposomal ATP/ADP ratios, but at constant total concentration of [ATP + ADP] = 5 mM, on the H+/e- stoichiometry of reconstituted COX from bovine heart and liver were studied. Above 98% ATP the H+/e- stoichiometry of the heart enzyme decreased to about half of the value measured at 100% ATP. In contrast, the H+/e- stoichiometry of the liver enzyme was not influenced by the ATP/ADP ratio. It is suggested that high intramitochondrial ATP/ADP ratios, corresponding to low cellular work load, will decrease the efficiency of energy transduction and result in elevated thermogenesis for the maintenance of body temperature. (Mol Cell Biochem 174: 131–135, 1997)  相似文献   

10.
Yakov M. Milgrom 《BBA》2010,1797(10):1768-1774
The effect of inorganic phosphate (Pi) on uni-site ATP binding and hydrolysis by the nucleotide-depleted F1-ATPase from beef heart mitochondria (ndMF1) has been investigated. It is shown for the first time that Pi decreases the apparent rate constant of uni-site ATP binding by ndMF1 3-fold with the Kd of 0.38 ± 0.14 mM. During uni-site ATP hydrolysis, Pi also shifts equilibrium between bound ATP and ADP + Pi in the direction of ATP synthesis with the Kd of 0.17 ± 0.03 mM. However, 10 mM Pi does not significantly affect ATP binding during multi-site catalysis.  相似文献   

11.
Two fluorescein-labeled pyridinylimidazoles were synthesized and evaluated as probes for the binding affinity determination of potential kinase inhibitors to the c-Jun N-terminal kinase 3 (JNK3) and p38α mitogen-activated protein kinase (MAPK). Fluorescence polarization (FP)-based competition binding assays were developed for both enzymes using 1-(3′,6′-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthen]-5-yl)-3-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)thiourea (5) as an FP probe (JNK3: Kd = 3.0 nM; p38α MAPK: Kd = 5.7 nM). The validation of the assays with known inhibitors of JNK3 and p38α MAPK revealed that both FP assays correlate very well with inhibition data received by the activity assays. This, in addition to the viability of both FP-based binding assays for the high-throughput screening procedure, makes the assays suitable as inexpensive prescreening protocols for JNK3 and p38α MAPK inhibitors.  相似文献   

12.
The serine/threonine kinase polo-like kinase 1 (Plk1) is critically involved in multiple mitotic processes and has been established as an adverse prognostic marker for tumor patients. Plk1 localizes to its substrates and its intracellular anchoring sites via its polo-box domain (PBD), which is unique to the family of polo-like kinases. Therefore, inhibition of the Plk1 PBD has been suggested as an approach to the inhibition of Plk1 that circumvents specificity problems associated with the inhibition of the conserved adenosine triphosphate (ATP) binding pocket. Here we report on the development of a high-throughput assay based on fluorescence polarization that allows the discovery of small-molecule inhibitors of the Plk1 PBD. The assay is based on binding of the Plk1 PBD to a phosphothreonine-containing peptide comprising its optimal binding motif with a Kd of 26 ± 2 nM. It is stable with regard to dimethyl sulfoxide (DMSO) and time, and it has a Z′ value of 0.73 ± 0.06 in a 384-well format.  相似文献   

13.
UCP1 catalyzes proton leak across the mitochondrial inner membrane to disengage substrate oxidation from ATP production. It is well established that UCP1 is activated by fatty acids and inhibited by purine nucleotides, but precisely how this regulation occurs remains unsettled. Although fatty acids can competitively overcome nucleotide inhibition in functional assays, fatty acids have little effect on purine nucleotide binding. Here, we present the first demonstration that fatty acids induce a conformational change in UCP1. Palmitate dramatically changed the binding kinetics of 2′/3′-O-(N-methylanthraniloyl)-GDP, a fluorescently labeled nucleotide analog, for UCP1. Furthermore, palmitate accelerated the rate of enzymatic proteolysis of UCP1. The altered kinetics of both processes indicate that fatty acids change the conformation of UCP1, reconciling the apparent discrepancy between existing functional and ligand binding data. Our results provide a framework for how fatty acids and nucleotides compete to regulate the activity of UCP1.  相似文献   

14.
Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the Kd for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant Kd in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a Kd value of CaM with PMCA (5.8 ± 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (Kd = 9.8 ± 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM.  相似文献   

15.
Nbp35 and Cfd1 are prototypical members of the MRP/Nbp35 class of iron-sulfur (FeS) cluster scaffolds that function to assemble nascent FeS clusters for transfer to FeS-requiring enzymes. Both proteins contain a conserved NTPase domain that genetic studies have demonstrated is essential for their cluster assembly activity inside the cell. It was recently reported that these proteins possess no or very low nucleotide hydrolysis activity in vitro, and thus the role of the NTPase domain in cluster biogenesis has remained uncertain. We have reexamined the NTPase activity of Nbp35, Cfd1, and their complex. Using in vitro assays and site-directed mutagenesis, we demonstrate that the Nbp35 homodimer and the Nbp35-Cfd1 heterodimer are ATPases, whereas the Cfd1 homodimer exhibited no or very low ATPase activity. We ruled out the possibility that the observed ATP hydrolysis activity might result from a contaminating ATPase by showing that mutation of key active site residues reduced activity to background levels. Finally, we demonstrate that the fluorescent ATP analog 2′/3′-O-(N′-methylanthraniloyl)-ATP (mantATP) binds stoichiometrically to Nbp35 with a KD = 15.6 μm and that an Nbp35 mutant deficient in ATP hydrolysis activity also displays an increased KD for mantATP. Together, our results demonstrate that the cytosolic iron-sulfur cluster assembly scaffold is an ATPase and pave the way for interrogating the role of nucleotide hydrolysis in cluster biogenesis by this large family of cluster scaffolding proteins found across all domains of life.  相似文献   

16.
A series of mononuclear iron(III) complexes with containing phenolate donor of substituted-salicylaldimine based ligands [Fe(L1)(TCC)] · CH3OH (1), [Fe(L2)(TCC)] · CH3OH (2), [Fe(L3)(TCC)] (3), and [Fe(L4)(TCC)] (4) have been prepared and studied as functional models for catechol dioxygenases (H2TCC = tetrachlorocatechol, or HL1 = N′-(salicylaldimine)-N,N-diethyldiethylenetriamine, HL2 = N′-(5-Br-salicylaldimine)-N,N-diethyldiethylenetriamine, HL3 = N′-(4,6-dimethoxy-salycyl-aldimine)-N,N-diethyl-diethylenetriamine, HL4 = N′-(4-methoxy-salicylaldimine)-N,N-diethyl-diethylenetriamine). They are structural models for inhibitors of enzyme-substrate adducts from the reactions of catechol 1,2-dioxygenases. Complexes 1-4 were characterized by spectroscopic methods and X-ray crystal structural analysis. The coordination sphere of Fe(III) atom of 1-4 is distorted octahedral with N3O3 donor set from the ligand and the substrate TCC occupying cis position, and Fe(III) is in high-spin (S = 5/2) electronic ground state. The in situ prepared iron(III) complexes without TCC, [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)Cl2], and [Fe(L4)Cl2] are reactive towards intradiol cleavage of the 3,5-di-tert-butylcatechol (H2DBC) in the presence of O2 or air. The reaction rate of catechol 1,2-dioxygenase depends on the redox potential and acidity of iron(III) ions in complexes as well as the substituent effect of the ligands. We have identified the reaction products and proposed the mechanism of the reactions of these iron(III) complexes with H2DBC with O2.  相似文献   

17.

Background

Cellular retinol binding-protein I (CRBPI) and cellular retinol binding-protein II (CRBPII) serve as intracellular retinoid chaperones that bind retinol and retinal with high affinity and facilitate substrate delivery to select enzymes that catalyze retinoic acid (RA) and retinyl ester biosynthesis. Recently, 9-cis-RA has been identified in vivo in the pancreas, where it contributes to regulating glucose-stimulated insulin secretion. In vitro, 9-cis-RA activates RXR (retinoid × receptors), which serve as therapeutic targets for treating cancer and metabolic diseases. Binding affinities and structure–function relationships have been well characterized for CRBPI and CRBPII with all-trans-retinoids, but not for 9-cis-retinoids. This study extended current knowledge by establishing binding affinities for CRBPI and CRBPII with 9-cis-retinoids.

Methods

We have determined apparent dissociation constants, K′d, through monitoring binding of 9-cis-retinol, 9-cis-retinal, and 9-cis-RA with CRBPI and CRBPII by fluorescence spectroscopy, and analyzing the data with non-linear regression. We compared these data to the data we obtained for all-trans- and 13-cis-retinoids under identical conditions.

Results

CRBPI and CRBPII, respectively, bind 9-cis-retinol (K′d, 11 nM and 68 nM) and 9-cis-retinal (K′d, 8 nM and 5 nM) with high affinity. No significant 9-cis-RA binding was observed with CRBPI or CRBPII.

Conclusions

CRBPI and CRBPII bind 9-cis-retinol and 9-cis-retinal with high affinities, albeit with affinities somewhat lower than for all-trans-retinol and all-trans-retinal.

General significance

These data provide further insight into structure–binding relationships of cellular retinol binding-proteins and are consistent with a model of 9-cis-RA biosynthesis that involves chaperoned delivery of 9-cis-retinoids to enzymes that recognize retinoid binding-proteins.  相似文献   

18.
Experimental studies of the binding interactions of [CuL(NO3)] and [{CuL′(NO3)}2] (HL = pyridine-2-carbaldehyde thiosemicarbazone, and HL′ = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone) with adenine, guanine, cytosine, thymine and their mononucleotides (dNMP), 2-deoxyadenosine-5′-monophosphate, (dAMP), 2′-deoxyguanosine-5′-monophosphate, (dGMP), 2′-deoxycytidine-5′-monophpsphate (dCMP), and thymidine-5′-monophosphate (dTMP) have been carried out in aqueous solution at pH 6.0, I = 0.1 M (NaClO4) and T = 25 °C. The complexation constants of these compounds, calculated by Hildebrand-Benesi plots for the dye binding, D, ([CuL] or [CuL′]) to the nucleobases or nucleotides (P), have shown two linear stretches in adenine, guanine, dAMP and dGMP. The data were analyzed in terms of formation of 1:1 DP and 1:2 DP2 complexes with increasing purine base or nucleotide content. For cytosine and dCMP only 1:1 complexes have been observed, whereas for thymine and dTMP such complex structures were not observed. The [CuL(Hcyt)](ClO4) cytosine derivative has been isolated and characterized. The crystal structure consists of perchlorate ions and [CuL(Hcyt)]+ monomers attached by hydrogen bond, chelate π−ring and anion-π interactions. The Cu2+ ions bind to the NNS chelating moiety of the thiosemicarbazone ligand and the cytosine N13 site (N3, most common notation) yielding a square-planar geometry. A pseudocoordination to the cytosine O12 site (=O2) can also be considered.  相似文献   

19.
A series of 3(R)-aminopyrrolidine derivatives were designed and synthesized for JAK1-selective inhibitors through the modification of tofacitinib’s core structure, (3R,4R)-3-amino-4-methylpiperidine. From the new core structures, we selected (R)-N-methyl-N-(pyrrolidin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine as a scaffold for further SAR studies. From biochemical enzyme assays and liver microsomal stability tests, (R)-3-(3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile (6) was chosen for further in vivo test through oral administration. Compound 6 showed improved selectivity for JAK1 compared to that of tofacitinib (IC50 11, 2.4?×?102, 2.8?×?103, and 1.1?×?102?nM for JAK1, JAK2, JAK3, and TYK2, respectively). In CIA and AIA model tests, compound 6 exhibited similar efficacy to tofacitinib citrate.  相似文献   

20.
A series of N-7-methyl-imidazolopyrimidine inhibitors of the mTOR kinase have been designed and prepared, based on the hypothesis that the N-7-methyl substituent on imidazolopyrimidine would impart selectivity for mTOR over the related PI3Kα and δ kinases. The corresponding N-Me substituted pyrrolo[3,2-d]pyrimidines and pyrazolo[4,3-d]pyrimidines also show potent mTOR inhibition with selectivity toward both PI3α and δ kinases. The most potent compound synthesized is pyrazolo[4,3-d]pyrimidine 21c. Compound 21c shows a Ki of 2 nM against mTOR inhibition, remarkable selectivity (>2900×) over PI3 kinases, and excellent potency in cell-based assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号