首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microrespiration device is decribed which uses a Clark electrode to measure the oxygen consumption or production of small and microscopic aquatic organisms in an open flow system. The construction and working principles of the device, which can measure oxygen consumptions as low as 0.5 nl · h−1, are described. The design of the apparatus permits parallel measurements under identical conditions with a single electrode. The device can be matched to various sizes of animal and oxygen consumption rates by means of specimen chambers of different volumes (6 μl, 35 μl, 140 μl) and a variable water flow rate. The microflow respiration device has been used successfully to measure the respiration of zooplankton and meiobenthos organisms as well as protozoans and has also been used successfully on board a research vessel.  相似文献   

2.
The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro.  相似文献   

3.
Genomics is the study of an organism’s entire genome. It started out as a great scientific endeavor in the 1990s which aimed to sequence the complete genomes of certain biological species. However viruses are not new to this field as complete viral genomes have routinely been sequenced since the past thirty years. The ‘genomic era’ has been said to have revolutionized biology. This knowledge of full genomes has created the field of functional genomics in today’s post-genomic era, which, is in most part concerned with the studies on the expression of the organism’s genome under different conditions. This article is an attempt to introduce its readers to the application of functional genomics to address and answer several complex biological issues in virus research.  相似文献   

4.
Several approaches have been developed over the past decade to study the complex interactions that occur in biological system. The ability to carry out a comprehensive genetic analysis of an organism becomes more limited and difficult as the complexity of the organism increases because complex organisms are likely to have not only more genes than simple organisms but also more elaborate networks of interactions among those genes. The development of technologies to systematically disrupt protein networks at the genomic scale would greatly accelerate the comprehensive understanding of the cell as molecular machinery. Intracellular antibodies (intrabodies) can be targeted to different intracellular compartments to specifically interfere with function of selected intracellular gene products in mammalian cells. This technique should prove important for studies of mammalian cells, where genetic approaches are more difficult. In the context of large-scale protein interaction mapping projects, intracellular antibodies (ICAbs) promise to be an important tool to knocking out protein function inside the cell. In this context, however, the need for speed and high throughput requires the development of simple and robust methods to derive antibodies which function within cells, without the need for optimization of each individual ICAb. The successful inhibition of biological processes by intrabodies has been demonstrated in a number of different cells. The performance of antibodies that are intracellularly expressed is, however, somewhat unpredictable, because the reducing environment of the cell cytoplasm in which they are forced to work prevents some antibodies, but not others, to fold properly. For this reason, we have developed an in vivo selection procedure named Intracellular Antibody Capture Technology (IACT) that allows the isolation of functional intrabodies. The IAC technology has been used for the rapid identification of antigen-antibody pairs in intracellular compartments and for the in vivo identification of epitopes recognized by the selected intracellular antibodies. Several optimizations of the IAC technology for protein knock-out have been developed so far. This system offers a powerful and versatile proteomic tool to dissect diverse functional properties of cellular proteins in different cell lines.  相似文献   

5.
6.
The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.  相似文献   

7.
Zhou P  Wen J  Oren A  Chen M  Wu M 《Genomics》2007,90(1):103-109
We have investigated the strategy of Halobacterium sp. NRC-1 and other members of the family Halobacteriaceae to survive ultraviolet (UV) irradiation, based on an integrated analysis of various genomic and proteomic features such as dinucleotide composition and distribution of tetranucleotides in the genome and amino acid composition of the proteins. The low dipyrimidine content may help Halobacterium reduce formation of photoproducts in its genome. The usage of residues susceptible to reactive oxygen species attack is reduced significantly in Halobacterium, which helps the organism to minimize protein damage. We then correlated the expression of the zim gene with the genomic structure to reexamine the importance of the putative mismatch repair pathway proposed previously. Our results showed that Halobacterium sp. NRC-1 and other haloarchaea (Haloarcula marismortui, Haloquadratum walsbyi) have optimized their genomic and proteomic structures to reduce damage induced by UV irradiation, often present at high levels in habitats where these organisms thrive.  相似文献   

8.
9.
Proteomics is the study of the protein complement of a genome and employs a number of newly emerging tools. One such tool is chemical proteomics, which is a branch of proteomics devoted to the exploration of protein function using both in vitro and in vivo chemical probes. Chemical proteomics aims to define protein function and mechanism at the level of directly observed protein–ligand interactions, whereas chemical genomics aims to define the biological role of a protein using chemical knockouts and observing phenotypic changes. Chemical proteomics is therefore traditional mechanistic biochemistry performed in a systems-based manner, using either activity- or affinity-based probes that target proteins related by chemical reactivities or by binding site shape/properties, respectively. Systems are groups of proteins related by metabolic pathway, regulatory pathway or binding to the same ligand. Studies can be based on two main types of proteome samples: pooled proteins (1 mixture of N proteins) or isolated proteins in a given system and studied in parallel (N single protein samples). Although the field of chemical proteomics originated with the use of covalent labeling strategies such as isotope-coded affinity tagging, it is expanding to include chemical probes that bind proteins noncovalently, and to include more methods for observing protein–ligand interactions. This review presents an emerging role for nuclear magnetic resonance spectroscopy in chemical proteomics, both in vitro and in vivo. Applications include: functional proteomics using cofactor fingerprinting to assign proteins to gene families; gene family-based structural characterizations of protein–ligand complexes; gene family-focused design of drug leads; and chemical proteomic probes using nuclear magnetic resonance SOLVE and studies of protein–ligand interactions in vivo.  相似文献   

10.
Site‐specific chemical cross‐linking in combination with mass spectrometry analysis has emerged as a powerful proteomic approach for studying the three‐dimensional structure of protein complexes and in mapping protein–protein interactions (PPIs). Building on the success of MS analysis of in vitro cross‐linked proteins, which has been widely used to investigate specific interactions of bait proteins and their targets in various organisms, we report a workflow for in vivo chemical cross‐linking and MS analysis in a multicellular eukaryote. This approach optimizes the in vivo protein cross‐linking conditions in Arabidopsis thaliana, establishes a MudPIT procedure for the enrichment of cross‐linked peptides, and develops an integrated software program, exhaustive cross‐linked peptides identification tool (ECL), to identify the MS spectra of in planta chemical cross‐linked peptides. In total, two pairs of in vivo cross‐linked peptides of high confidence have been identified from two independent biological replicates. This work demarks the beginning of an alternative proteomic approach in the study of in vivo protein tertiary structure and PPIs in multicellular eukaryotes.  相似文献   

11.
Chromatin structure as a mediator of aging   总被引:1,自引:0,他引:1  
Feser J  Tyler J 《FEBS letters》2011,(13):698-2048
The aging process is characterized by gradual changes to an organism’s macromolecules, which negatively impacts biological processes. The complex macromolecular structure of chromatin regulates all nuclear processes requiring access to the DNA sequence. As such, maintenance of chromatin structure is an integral component to deter premature aging. In this review, we describe current research that links aging to chromatin structure. Histone modifications influence chromatin compaction and gene expression and undergo many changes during aging. Histone protein levels also decline during aging, dramatically affecting chromatin structure. Excitingly, lifespan can be extended by manipulations that reverse the age-dependent changes to chromatin structure, indicating the pivotal role chromatin structure plays during aging.  相似文献   

12.
Proteomics is the study of the protein complement of a genome and employs a number of newly emerging tools. One such tool is chemical proteomics, which is a branch of proteomics devoted to the exploration of protein function using both in vitro and in vivo chemical probes. Chemical proteomics aims to define protein function and mechanism at the level of directly observed protein-ligand interactions, whereas chemical genomics aims to define the biological role of a protein using chemical knockouts and observing phenotypic changes. Chemical proteomics is therefore traditional mechanistic biochemistry performed in a systems-based manner, using either activity- or affinity-based probes that target proteins related by chemical reactivities or by binding site shape/properties, respectively. Systems are groups of proteins related by metabolic pathway, regulatory pathway or binding to the same ligand. Studies can be based on two main types of proteome samples: pooled proteins (1 mixture of N proteins) or isolated proteins in a given system and studied in parallel (N single protein samples). Although the field of chemical proteomics originated with the use of covalent labeling strategies such as isotope-coded affinity tagging, it is expanding to include chemical probes that bind proteins noncovalently, and to include more methods for observing protein-ligand interactions. This review presents an emerging role for nuclear magnetic resonance spectroscopy in chemical proteomics, both in vitro and in vivo. Applications include: functional proteomics using cofactor fingerprinting to assign proteins to gene families; gene family-based structural characterizations of protein-ligand complexes; gene family-focused design of drug leads; and chemical proteomic probes using nuclear magnetic resonance SOLVE and studies of protein-ligand interactions in vivo.  相似文献   

13.
The lipid droplet (LD) is an organelle with vital functions found in nearly all organisms. LD proteomic research has provided fundamentally important insights into this organelle's functions. The review provides a summary of LD proteomic studies conducted across diverse organisms and cell and tissue types. The accumulated proteomic data are reviewed for evidence of a protein targeting mechanism for the organelle. The hypotheses for several specific localization mechanisms based on what is known about targeting mechanisms for other organelles and vesicles are provided. Although the nature of the mechanism is not known, the functional data demonstrate that the targeting mechanism and, indeed, the organelle itself, is conserved from prokaryotes to eukaryotes. It is hoped that the review will help inspire further research leading to novel discoveries in the field.  相似文献   

14.
15.
16.
17.
We present a novel approach for examining the complex feeding behavior of a filter feeder at a previously unexploited scale. A Daphnia lives in a viscous environment and thus creates a feeding current with a distinct laminar inflow and a repetitive pulsed outflow. We propose that by treating the feeding apparatus as a black box, and using the pulsed outflow current as a surrogate to the inside working of the apparatus, we can calculate feeding rate in near real time. The structure of the outflow is interpreted as a direct representation of the organism’s response to its environment. Therefore, we examine how the work performed by an organism’s feeding apparatus is altered according to environmental factors and metabolic demands. Our approach is an integration of optical (Schlieren system) and electrochemical (chronoamperometry) techniques that allow for real time visualization and temporal analysis of flow systems, respectively. As electrochemistry requires a tracer chemical, we employed low dopamine concentrations (≤ 1mM), and tested the effect of dopamine on the heart rate and swimming of Daphnia. It appears that dopamine free in solution at concentrations below 10 mM has no adverse effects on the organism, and all observed differences in Daphnia feeding behavior were due to environmental or metabolic factors. The feeding nature of daphnids in the presence or absence of food, and differences between the sexes is reported. Our results indicate that in the absence of food a Daphnia has a strict and repetitive feeding behavior with short delays between pumping actions. However, in the presence of food this behavior becomes complex, with increased delays between pumps, perhaps designed to maximize feeding efficiency. Our observations demonstrate that males have a higher appendage beat frequency than females under identical conditions. We hypothesize that the difference may be dictated by metabolic demand, as a male spends more time actively seeking a mate. The application of electrochemistry to the study of Daphnia feeding behavior is an improvement over current methods for its near real time quantification of behavioral response, its versatile application under varying environmental conditions and its extreme sensitivity to changes in the organism’s feeding behavior. This technique is a valuable addition to the current tools available for studying Daphnia feeding behavior and will allow us to learn more about the interactions of an organism with its environment. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

18.
19.
Proteome Analysis: Genomics via the Output Rather Than the Input Code   总被引:9,自引:0,他引:9  
A knowledge of the proteome, total protein output encoded by a genome, provides information on (1) if and when predicted gene products are translated, (2) the relative concentrations of gene products, and (3) the extent of posttranslational modification, none of which can be accurately predicted from the nucleic acid sequence alone. The current status of proteome analysis is reviewed with respect to some of the techniques employed, automation, relevance to genomic studies, mass spectrometry and bioinformatics, limitations, and recent improvements in resolution and sensitivity for the detection of protein expression in whole cells, tissues, or organisms. The concept of proteomic contigs is introduced for the first time. Traditional approaches to genomic analysis call upon a number of strategies to produce contiguous DNA sequence information, while proteomic contigs are derived from multiple molecular mass and isoelectric point windows in order to construct a picture of the total protein expression within living cells. In higher eukaryotes, the latter may require several dozen image subsets of protein spots to be stitched together using advanced image analysis. The utility of both experimental and theoretical peptide-mass fingerprinting (PMF) and associated bioinformatics is outlined. A previously unknown motif within the peptide sequence of Elongation Factor Tu from Thermus aquaticus was discovered using PMF. This motif was shown to possess potential significance in maintaining structural integrity of the entire molecule.  相似文献   

20.
Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism’s inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses) for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号