首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of sea salts, NaCl, KCl, MgCl2, MgSO4, and CaCl2, on the growth of protoplast cultures of two mangrove species, Sonneratia alba and Avicennia alba, were investigated using 96-well culture plates. Plants of these two species naturally grow at the seaward side of a mangrove forest. Cotyledon protoplasts of S. alba showed halophilic nature to NaCl, KCl, and MgCl2 at low concentrations (10–50 mM) when cultured in Murashige and Skoog’s (MS) medium containing 0.6 M mannitol. CaCl2 at a concentration higher than 25 mM was inhibitory to cell growth. On the other hand, in protoplast culture of A. alba suspension cells, which were induced from cotyledon tissues, in the modified amino acid (mAA) medium containing 1.2 M sorbitol, tolerance to NaCl, MgCl2 and MgSO4 were observed at a wide range of concentrations up to 400 mM. CaCl2 was always inhibitory for cell divisions in A. alba, but stimulatory for spherical enlargement of cells. However, no difference in cell enlargement was observed among other salts. Similarity and difference in reactivity to salts between protoplasts and suspension cells from our previous studies were discussed in relation to the site of salt tolerance or halophilic adaptation within mangrove cells. For protoplast cultures, the site(s) for response of S. alba and A. alba are located in the cytoplasm and/or the cell membrane.  相似文献   

2.
A bioassay method for allelopathy, the ‘protoplast co-culture method’ was developed to study the relationship between salt tolerance and allelopathy of three mangrove species, Sonneratia alba, S. caseolaris, and S. ovata. Plants of S. alba grow in the seaward-side high salinity region and plants of the latter two species grow in upstream-side regions of a mangrove forest, respectively. Effects of five sea salts (NaCl, KCl, MgCl2, MgSO4 and CaCl2) on the growth of the suspension cells of the latter two species were first investigated by a small-scale method using 24-well culture plates. S. ovata cells showed higher tolerance than S. caseolaris cells to NaCl and other salts, but were not as halophilic as S. alba cells. Protoplasts isolated from suspension cells were co-cultured with lettuce protoplasts in Murashige and Skoog’s (MS) basal medium containing 1 μM 2,4-dichlorophenoxyacetic acid, 0.1 μM benzyladenine, 3 % sucrose and 0.6–0.8 M osmoticum. S. caseolaris protoplasts had a higher inhibitory effect on lettuce protoplast cell divisions than S. alba protoplasts at any lettuce protoplast density, and the effect of S. ovata was intermediate between the two. These results were similar to those obtained from a different in vitro bioassay method for allelopathy, the ‘sandwich method’ with dried leaves. The inverse relationship between allelopathic activity and salt tolerance in suspension cells of Sonneratia mangroves is discussed.  相似文献   

3.
Silene alba cells grown on nitrate, usually develop NADH-nitrate reductase activity only at the beginning of their growth cycle. Immunodiffusion assays, with a specific nitrate reductase antiserum, revealed the presence of cross-reacting material in cells harvested at any time during their culture. Cells grown on ammonium lacked NADH-nitrate reductase activity but contained cross-reacting material. It is suggested that S. alba cells contain an enzymically inactive, antigenic form of nitrate reductase regardless of the nitrogen source.  相似文献   

4.
A root nodule bacterium, Sinorhizobium meliloti CCNWSX0020, resistant to 1.4 mM Cu2+ was isolated from Medicago lupulina growing in mine tailings. In medium supplied with copper, this bacterium showed cell deformation and aggregation due to precipitation of copper on the cell surface. Genes similar to the copper-resistant genes, pcoR and pcoA from Escherichia coli, were amplified by PCR from a 1.4-Mb megaplasmid. Inoculation with S. meliloti CCNWSX0020 increased the biomass of M. lupulina grown in medium added 0 and 100 mg Cu2+ kg−1 by 45.8% and 78.2%, respectively, and increased the copper concentration inside the plant tissues grown in medium supplied with 100 μM Cu2+ by 39.3%, demonstrating that it is a prospective symbiotic system for bioremediation purposes.  相似文献   

5.
The transpeptidation activity of γ-glutamyltranspeptidase from Geobacillus thermodenitrificans (GthGT) is negligible and the enzyme is highly thermostable. Here we have examined the effect of concentrated NaCl solutions on structure, stability, dynamics and enzymatic activity of GthGT. The protein exhibited hydrolytic activity over a broad range of NaCl concentrations. Even at 4.0 M NaCl, GthGT retained more than 90% of the initial activity and showed unaltered fluorescence emission, secondary structure and acrylamide quenching on tryptophan fluorescence. Furthermore, at 2.8 M and 4.0 M NaCl the temperature-induced unfolding profiles are dramatically changed with large (> 20 °C) positive shifts in the denaturation temperature. These features make GthGT an ideal system to be used in industrial processes that require high temperatures and high-salt environments. A general explanation of the NaCl effect by means of a statistical thermodynamic model is also provided, together with an analysis of residue distribution between protein surface and interior in 15 non-redundant families of halophilic and non-halophilic proteins. The results are in line with a comparative sequence and structural analysis between halophilic and non-halophilic γ-glutamyltranspeptidases which revealed that a major role in halotolerance should be played by solvent exposed negatively charged residues.  相似文献   

6.
The effect of gastrointestinal mucus on protease activity in Vibrio anguillarum was investigated. Protease activity was measured by using an azocasein hydrolysis assay. Cells grown to stationary phase in mucus (200 μg of mucus protein/ml) exhibited ninefold-greater protease activity than cells grown in Luria-Bertani broth plus 2% NaCl (LB20). Protease induction was examined with cells grown in LB20 and resuspended in mucus, LB20, nine-salts solution (NSS [a carbon-, nitrogen-, and phosphorus-free salt solution]), or marine minimal medium (3M) (~109 CFU/ml). Induction of protease activity occurred 60 to 90 min after addition of mucus and was ≥70-fold greater than protease activity measured in cells incubated in either LB20 or 3M. Mucus was fractionated into aqueous and chloroform-methanol-soluble fractions. The aqueous fraction supported growth of V. anguillarum cells, but did not induce protease activity. The chloroform-methanol-soluble fraction did not support growth, nor did it induce protease activity. When the two fractions were mixed, protease activity was induced. The chloroform-methanol-soluble fraction did not induce protease activity in cells growing in LB20. EDTA (50 mM) inhibited the protease induced by mucus. Upon addition of divalent cations, Mg2+ (100 mM) was more effective than equimolar amounts of either Ca2+ or Zn2+ in restoring activity, suggesting that the mucus-inducible protease was a magnesium-dependent metalloprotease. An empA mutant strain of V. anguillarum did not exhibit protease activity after exposure to mucus, but did grow in mucus. Southern analysis and PCR amplification confirmed that V. anguillarum M93 contained empA. These data demonstrate that the empA metalloprotease of V. anguillarum is specifically induced by gastrointestinal mucus.  相似文献   

7.
Emad A. Al Sherif 《Flora》2009,204(10):737-746
Previously unexploited legume species may offer utilization potential where environmental stresses constrain the use of more conventional forage crops. Melilotus indicus (L.) All., Yellow sweet clover, occurs as a weed in different habitats in Egypt. It grows in moderately saline areas, where traditional forage legumes cannot be cultivated. Our extensive field studies have recorded the species in many different habitats ranging from healthy agricultural lands to abandoned saline areas. The studied plants maintained high nodulation capacity (68 – 95%) and nitrogenase activities (about 1.81 μmol C2H4 plant−1 h−1) in different habitats. Greenhouse experiments demonstrated that seed germination was maintained at 80% when growing on substrats containing 200 mM NaCl and that 25% of the germination capability was preserved when 300 mM NaCl was added to the growth medium. The growth rate of seedlings was not significantly affected by 200 mM NaCl but was reduced by 30% under 300 mM NaCl. It is supposed that M. indicus uses a salt inclusion mechanism for maintaining growth under saline conditions, as it accumulated high amounts of Na+ and Cl ions. Leaf succulence and indices of leaf water status did not differ among the salt treatments, whereas relative water content was reduced by only 3% and water content at saturation increased by about 14% at high salt concentrations in the growing medium. Our results suggest recommending the cultivation of M. indicus in salt-affected soils, which are widespread and pose a problem for the farmers of Egypt and other countries in the world's arid belt.  相似文献   

8.
The effects of salt stress on dry mass, lipid peroxidation, polyphenol and hydrogen peroxide content and activities of antioxidative enzymes were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under a broad range of NaCl concentrations (0, 100, 200, and 300 mM) on Murashige and Skoog medium for 45 d. Dry mass of both species increased at low (100 mM) salinity but decreased at higher NaCl concentrations. Malondialdehyde (MDA) content decreased at low salinity, whereas increased at 200 and 300 mM NaCl. H2O2 content in S. europaea was considerably enhanced by salinity, but it was not significantly affected in S. persica. The salt stress progressively enhanced the polyphenol content in S. persica, whereas in S. europaea, it increased with respect to the control only at higher salinities. In both species, the salinity progressively enhanced the superoxide dismutase (SOD) and peroxidase (POD) activities, whereas the CAT activity was only registered at the low salinity and the APX activity decreaseed in both species. The results indicate that S. persica exhibited a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea.  相似文献   

9.

Introduction

Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear.

Methods

This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined.

Results

TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used.

Conclusions

Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.  相似文献   

10.
Aqueous dispersions of 50 mM dimyristoylphosphatidylglycerol (DMPG) in the presence of increasing salt concentrations (2-500 mM NaCl) were studied by small angle X-ray scattering (SAXS) and optical microscopy between 15 and 35 °C. SAXS data show the presence of a broad peak around q ∼ 0.12 Å− 1 at all temperatures and conditions, arising from the electron density contrasts within the bilayer. Up to 100 mM NaCl, this broad peak is the main feature observed in the gel and fluid phases. At higher ionic strength (250-500 mM NaCl), an incipient lamellar repeat distance around d = 90-100 Å is detected superimposed to the bilayer form factor. The data with high salt were fit and showed that the emergent Bragg peak is due to loose multilamellar structures, with the local order vanishing after ∼ 4d. Optical microscopy revealed that up to 20 mM NaCl, DMPG is arranged in submicroscopic vesicles. Giant (loose) multilamellar vesicles (MLVs) start to appear with 50 mM NaCl, although most lipids are arranged in small vesicles. As the ionic strength increases, more and denser MLVs are seen, up to 500 mM NaCl, when MLVs are the prevailing structure. The DLVO theory could account for the experimentally found interbilayer distances.  相似文献   

11.
Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1×), tryptose phosphate broth (2.95 g l−1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 μg ml−1 chloramphenicol, 100 μg ml−1 streptomycin and 100 IU ml−1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-2′-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals.  相似文献   

12.
Brine shrimp (Artemia salina) belong to a group of crustaceans that feed on microalgae and require a cellulase enzyme that can be used in ethanol production from marine algae. Protein with potential cellulase activity was purified and the activity analyzed under different conditions. After initial identification of cellulase activity by CMC cellulase, surface sterilization and PCR using 16s rRNA primers was conducted to confirm that the cellulase activity was not produced from contaminating bacteria. The enzyme was purified by ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. After the final purification, a 70-fold increase in specific enzyme activity was observed. SDS–PAGE results revealed that the cellulase enzyme had a molecular mass of 96 kDa. Temperature, pH, and salinity values were found to be optimal at 55 °C, pH 8.0, and 600 mM NaCl, respectively. Specifically, the enzyme showed a fivefold increase in enzyme activity in seawater compared to 600 mM NaCl in phosphate buffer. Further analysis of the purified enzyme by molecular spectrometry showed no match to known cellulases, indicating this enzyme could be a novel halophilic cellulase that can be used for the production of bioethanol from marine macroalgae.  相似文献   

13.
14.
Effects of salinity on growth, protein content, proline, catalase and antioxidant enzyme activity in callus of three halophytes of the Thar Desert; Salsola baryosma, Trianthema triquetra and Zygophyllum simplex were evaluated. Callus tissues were cultured on Murashige and Skoog’s medium containing different concentrations of NaCl (50, 100 and 200 mM). Increase in dry weight and soluble proteins were observed in the callus exposed to lower salinity (50 and 100 mM NaCl) in all the three species, whereas on the medium containing 200 mM NaCl, significant decrease in these two growth parameters was recorded. Under the salinity stress maximum proline accumulation was found in S. baryosma with parallel increase in soluble sugars. Among the three species, T. triquetra callus showed maximum CAT activity with 50 and 100 mM NaCl treatment, whereas the enzyme activity decreased at 200 mM NaCl treatment in all three species. The antioxidant potential steadily elevated under salt treatment in all the above three species using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) assay. Whereas, superoxide dismutase (SOD) quenching were recorded maximum at low (50 and 100 mM) concentrations in all the three species. However, T. triquetra callus showed maximum total phenolic content (TPC) 15 mg GAE g?1 with the elevated concentration of NaCl up to 200 mM, and S. baryosma callus showed lower TPC as compared to both species. A significant correlation between antioxidant capacity and TPC was observed indicating that phenolic compounds are the major contributors to the antioxidant potential in these halophyte species. FRAP and DPPH activity of Z. simplex showed maximum correlation (R = 0.992), as compared to other two species. We can conclude that all the three species exhibit a protection mechanism by sustaining growth parameters and antioxidant capacity. Due to high antioxidant property of all these species, the plant extracts may be included in nutraceutical formulations.  相似文献   

15.
Acyltransferase activity of amidase from Bacillus sp. APB-6 was enhanced (24 U) by multiple feedings of N-methylacetamide (70 mM) into the production medium. Hyperinduced whole resting cells of Bacillus sp. APB-6 corresponding to 4 g/L (dry cell weight), when treated with 10 mM DTT (dithiothreitol) resulted in 93% molar conversion of acetamide (300 mM) to acetohydroxamic acid in presence of hydroxylamine-HCl (800 mM) after 30 min at 45 °C in a 1 L reaction mixture. After lyophilization, a 62 g powder containing 34% (wt wt−1) acetohydroxamic acid was recovered. This is the first report where DTT has been used to enhance acyltransfer reaction and such high molar conversion (%) of amide to hydroxamates was recorded at 1 L scale.  相似文献   

16.
Wei X  Luo M  Li W  Yang L  Liang X  Xu L  Kong P  Liu H 《Bioresource technology》2012,103(1):273-278
Silver nanoparticles (AgNPs) were obtained by solar irradiation of cell-free extracts of Bacillus amyloliquefaciens and AgNO3. Light intensity, extract concentration, and NaCl addition influenced the synthesis of AgNPs. Under optimized conditions (solar intensity 70,000 lx, extract concentration 3 mg/mL, and NaCl content 2 mM), 98.23 ± 0.06% of the Ag+ (1 mM) was reduced to AgNPs within 80 min, and the ζ-potential of AgNPs reached −70.84 ± 0.66 mV. TEM (Transmission electron microscopy) and XRD (X-ray diffraction) analysis confirmed that circular and triangular crystalline AgNPs with mean diameter of 14.6 nm were synthesized. Since heat-inactivated extracts also mediated the formation of AgNPs, enzymatic reactions are likely not involved in AgNPs formation. A high absolute ζ-potential value of the AgNPs, possibly caused by interaction with proteins likely explains the high stability of AgNPs suspensions. AgNPs showed antimicrobial activity against Bacillus subtilis and Escherichia coli in liquid and solid medium.  相似文献   

17.
In this work, we describe the ability of living trophozoites of Giardia lamblia to hydrolyze extracellular ATP. In the absence of any divalent cations, a low level of ATP hydrolysis was observed (0.78 ± 0.08 nmol Pi × h−1 × 10−6 cells). The ATP hydrolysis was stimulated by MgCl2 in a dose-dependent manner. Half maximum stimulation of ATP hydrolysis was obtained with 0.53 ± 0.07 mM. ATP was the best substrate for this enzyme. The apparent Km for ATP was 0.21 ± 0.04 mM. In the pH range from 5.6 to 8.4, in which cells were viable, this activity was not modified. The Mg2+-stimulated ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1 (V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The impermeant agent DIDS and suramin, an antagonist of P2 purinoreceptors and inhibitor of some ecto-ATPases, decreased the enzymatic activity in a dose-dependent manner, confirming the external localization of this enzyme. Besides ATP, trophozoites were also able to hydrolyse ADP and 5´ AMP, but the hydrolysis of these nucleotides was not stimulated by MgCl2. Our results are indicative of the occurrence of a G. lamblia ecto-ATPase activity that may have a role in parasite physiology.  相似文献   

18.
Here we demonstrate for the first time that growth of Trypanosoma rangeli, a protozoa parasite, is strongly dependent on the presence of inorganic phosphate (Pi) in the culture medium and that the replacement of the inorganic phosphate in the culture medium by β-glycerophosphate, a substrate for phosphatases lead the cells to achieve its maximal growth. The ecto-phosphatase activity present on the external surface of T. rangeli decreased during the growth phase of the parasite, suggesting that this enzyme could be important for the development. Accordingly, the inhibition of this ecto-phosphatase activity by sodium orthovanadate also inhibited the proliferation of T. rangeli. Parasites maintained in a Pi-starved culture medium (2 mM Pi) had 4-fold more ecto-phosphatase activity as compared to parasites maintained in a Pi-supplemented culture medium (50 mM Pi). Altogether, these results presented here suggest that this ecto-phosphatase activity leads to hydrolysis of phosphorylated compounds present in the extracellular medium, which could contribute to the acquisition of inorganic phosphate during the development of T. rangeli epimastigotes.  相似文献   

19.
The halophilic bacterial strain Chromohalobacter sp. TVSP 101 was shown to produce extracellular, halotolerant, alkali-stable and moderately thermophilic α-amylase activity. The culture conditions for higher amylase production were optimized with respect to NaCl, pH, temperature and substrates. Maximum amylase production was achieved in a medium containing 20% NaCl or 15% KCl at pH 9.0 and 37 °C in the presence of 0.5% rice flour and tryptone. Addition of 50 mM CaCl2 to the medium increased amylase production by 29%. Two kinds of amylase activity, designated amylase I and amylase II, were purified from culture filtrates to homogeneity with molecular masses of 72 and 62 kDa, respectively. Both enzymes had maximal activity at pH 9.0 and 65 °C in the presence of 0–20% (w/v) NaCl but amylase I was much more stable in the absence of NaCl than amylase II. The enzymes efficiently hydrolyzed carbohydrates to yield maltotetraose, maltotriose, maltose, and glucose as the end products.  相似文献   

20.
The recombinant Escherichia coli M15/BCJ2315 which harbored a mandelonitrilase from Burkholderia cenocepacia J2315 was immobilized via catecholic chitosan and functionalized with magnetism by iron oxide nanoparticles. The immobilized cells showed high activity recovery, enhanced stability and good operability in the enantioselective hydrolysis of mandelonitrile to (R)-(−)-mandelic acid. Furthermore, the immobilized cells were reused up to 15 cycles without any activity loss in completely hydrolyzing mandelonitrile (100 mM) within 1 h in aqueous solution. The ethyl acetate–water biphasic system was built and optimized. Under the optimal conditions, as high as 1 M mandelonitrile could be hydrolyzed within 4 h with a final yield and ee value of 99% and 95%, respectively. Moreover, the successive hydrolysis of mandelonitrile was performed by repeated use of the immobilized cells for 6 batches, giving a final productivity (g L−1 h−1) and relative production (g g−1) of 40.9 and 38.9, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号