首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flood discharge results in total dissolved gas (TDG) supersaturation downstream of a dam during the flood period. Fish suffer death from gas bubble disease (GBD) caused by TDG supersaturation. Nonetheless, current studies mainly attach importance to the survival of benthic fish affected by TDG supersaturation in the Yangtze River in China. Few studies have attempted to investigate the survival of pelagic fish influenced by TDG supersaturated water and compare the tolerance characteristics to TDG supersaturation between benthic and pelagic fish. To identify the survival of fish species that inhabit the various water layers affected by TDG supersaturation, silver carp (Hypophthalmichthys molitrix) (pelagic fish) and common carp (Cyprinus carpio) (benthic fish) were chosen to conduct an acute exposure experiment of four different TDG supersaturation levels (125%, 130%, 135% and 140%). The findings illustrated that the two fish species both exhibited evident aberrant behaviours of maladjustment in TDG supersaturated water. Obvious GBD symptoms were also found in the test fish. The survival probability of silver carp and common carp decreased with increasing levels of TDG supersaturation. The median survival time (ST50) values of the silver carp exposed to four levels of TDG supersaturated water (125%, 130%, 135% and 140%) were 26.84, 7.96, 5.56 and 3.62 h, respectively, whereas the ST50 values of common carp were 53.50, 26.00, 16.50 and 11.70 h, respectively. When compared with common carp, silver carp had a weaker tolerance to TDG-supersaturated water and were vulnerable to GBD. It shows that levels above 125% are not safe for common carp survival. In terms of the tolerance threshold value, silver carp merits further investigation because it showed lower tolerance to TDG than did common carp.  相似文献   

2.
Supersaturation of surface water with atmospheric gases may result from hydroelectric or thermoelectric power generation and adversely affect aquatic biota. Although the phenomenon has been extensively studied in the northwestern United States, its occurrence is less well documented in Europe. We evaluated the tolerance of carp, Cyprinus carpio , and black bullhead, Ictalurus melas , from Italy to gas supersaturated water and compared our results to data reported in the literature for the same species from the Columbia River, U.S.A. Carp and black bullhead from Italy were more susceptible to gas supersaturation than those from the Columbia River. This may reflect greater adaptation of Columbia River fish due to their historical exposure to supersaturated water resulting from numerous hydroelectric dams.  相似文献   

3.
Stenberg  Sondre Kvalsvik  Velle  Gaute  Pulg  Ulrich  Skoglund  Helge 《Hydrobiologia》2022,849(2):527-538
Hydrobiologia - Total dissolved gas (TDG) supersaturation downstream of hydropower plants may cause gas bubble disease (GBD) and harmful effects in fish. Little is known about tolerance levels of...  相似文献   

4.
It is shown that the decompression schedules after saturation diving to the depth of 30 m designed to hold the nitrogen supersaturation for the most “slow” tissues at the acceptable levels is significantly shorter than the decompression schedules with zero supersaturation of these tissues with nitrogen and all dissolved gases. Equality of the risk for decompression sickness (DCS) onset during this decompression schedule to the risk of DCS onset under non-stop ascent to the surface after saturation diving to the depth of 6.1 m indicates that the effect of the high ambient pressure decreases the density of gas bubble seeds in tissues and the growth rate of their total volume. The DCS symptoms in the experienced divers under dangerous decompression profiles not appear due to the lower density of gas bubble seeds in their tissues relatively to the average level inherent to the many of humans.  相似文献   

5.
Summary The following two-phase properties were evaluated in bubble column reactors with porous plate (5 m pore diameter) or perforated plate (1 mm and/or 3 mm hole diameter) gas distributors using distilled water or a 1% methanol solution: transverse profiles of the mean and Sauter bubble diameters, local gas holdups, true mean liquid and bubble velocities. Furthermore, swarm bubble velocity distributions were evaluted and compared with calculated values.  相似文献   

6.
基于着生藻类的太子河流域水生态系统健康评价   总被引:14,自引:0,他引:14  
殷旭旺  渠晓东  李庆南  刘颖  张远  孟伟 《生态学报》2012,32(6):1677-1691
本研究以辽宁省太子河流域为研究范例,调查了全流域范围内69个样点的着生藻类群落和水环境理化特征,并在此基础上应用硅藻生物评价指数(DBI)和生物完整性评价指数(P-IBI),同时结合栖息地环境质量评价指数(QHEI),对太子河流域水生态系统进行健康评价。结果表明,太子河流域着生藻类群落结构具有明显的空间异质性,CCA结果显示驱动着生藻类群落结构形成的水环境因子为电导率、总溶解固体和总氮。虽然DBI、P-IBI和QHEI在太子河流域某些河段上的评价结果有较大出入,但从全流域尺度上看,DBI、P-IBI和QHEI的评价结果基本一致,表现为太子河上游健康状况较好,中游健康状况一般,而下游健康状况较差。文中讨论了水环境理化因子与着生藻类群落结构的相互关系,并对比分析了DBI、P-IBI和QHEI这三种河流健康评价方法。  相似文献   

7.
Adult steelhead Oncorhynchus mykiss tagged with archival transmitters primarily migrated through a large river corridor at depths >2 m interspersed with frequent but short (<5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the supersaturated dissolved gas conditions encountered and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon Oncorhynchus tshawytscha study, except O. mykiss experienced greater seasonal variability and were more likely to have depth uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species.  相似文献   

8.
We explored the relationships between aquatic bird abundance and various pond features (physical and chemical) using data from 112 ponds located in the Aspen Parkland of British Columbia. As expected, pond size was the most important factor influencing the number of aquatic birds present. Total dissolved nitrogen, conductivity and calcium were positively associated with the abundance of several species whereas chloride tended to be negatively associated. The abundance of dabbling ducks was positively associated with turbidity and total dissolved nitrogen and negatively with percent of forested shoreline, percent of marsh and chloride. The abundance of diving ducks was associated positively with pond depth, conductivity and total dissolved nitrogen and negatively with percent of marsh and phosphorus levels. Pond area influenced more the abundance of diving ducks than dabbling ducks. Relationships between bird density and pond features were affected significantly by the area unit used to calculate density. For example, the density of Bufehead (Bucephala albeola) was correlated positively with pH and conductivity when expressed per area of water 0–2 m deep but negatively when expressed per total area of pond. Results highlight the problems associated with interpreting correlative type studies especially the difficulties in assessing the biological significance of the observed correlations. It underscores the urgent need for experimental approaches to bird-habitat studies.  相似文献   

9.
Bacterioplankton communities are deeply diverse and highly variable across space and time, but several recent studies demonstrate repeatable and predictable patterns in this diversity. We expanded on previous studies by determining patterns of variability in both individual taxa and bacterial communities across coastal environmental gradients. We surveyed bacterioplankton diversity across the Columbia River coastal margin, USA, using amplicon pyrosequencing of 16S rRNA genes from 596 water samples collected from 2007 to 2010. Our results showed seasonal shifts and annual reassembly of bacterioplankton communities in the freshwater-influenced Columbia River, estuary, and plume, and identified indicator taxa, including species from freshwater SAR11, Oceanospirillales, and Flavobacteria groups, that characterize the changing seasonal conditions in these environments. In the river and estuary, Actinobacteria and Betaproteobacteria indicator taxa correlated strongly with seasonal fluctuations in particulate organic carbon (ρ=−0.664) and residence time (ρ=0.512), respectively. In contrast, seasonal change in communities was not detected in the coastal ocean and varied more with the spatial variability of environmental factors including temperature and dissolved oxygen. Indicator taxa of coastal ocean environments included SAR406 and SUP05 taxa from the deep ocean, and Prochlorococcus and SAR11 taxa from the upper water column. We found that in the Columbia River coastal margin, freshwater-influenced environments were consistent and predictable, whereas coastal ocean community variability was difficult to interpret due to complex physical conditions. This study moves beyond beta-diversity patterns to focus on the occurrence of specific taxa and lends insight into the potential ecological roles these taxa have in coastal ocean environments.  相似文献   

10.
Macrophages and other cells are capable of ingesting a variety of solids from their external environment. When such phagocytic processes occur in animals, they can lead to phagocytosis from the respiratory or the digestive tract of particles containing minute air emobli that may serve as bubble nuclei upon exposure of the animal to conditions of gas supersaturation. To test whether this is possible, gas supersaturation tolerances were determined for murine macro-phages and macrophage-like tumor cells, and for cells of the slime moldDictyostelium discoideum, before and after phagocytosis of particles that were effective in inducing bubble formation in nitrogensupersaturated aqueous suspensions. After phagocytosis, the ability of the particles to induce bubble formation was completely abolished. All three cell types essentially retained their normal high resistance to bubble formation; even nitrogen supersaturations in excess of 150 atm (1.55 × 107 Pa) did not lead to internal bubbles. Alterations of the particle surfaces and unique properties of the intracellular fluid appear to be the underlying cause of the extremely high gas supersaturation tolerances observed.  相似文献   

11.
Macrophages and other cells are capable of ingesting a variety of solids from their external environment. When such phagocytic processes occur in animals, they can lead to phagocytosis from the respiratory or the digestive tract of particles containing minute air emobli that may serve as bubble nuclei upon exposure of the animal to conditions of gas supersaturation. To test whether this is possible, gas supersaturation tolerances were determined for murine macrophages and macrophage-like tumor cells, and for cells of the slime mold Dictyostelium discoideum, before and after phagocytosis of particles that were effective in inducing bubble formation in nitrogen-supersaturated aqueous suspensions. After phagocytosis, the ability of the particles to induce bubble formation was completely abolished. All three cell types essentially retained their normal high resistance to bubble formation; even nitrogen supersaturations in excess of 150 atm (1.55 x 10(7) Pa) did not lead to internal bubbles. Alterations of the particle surfaces and unique properties of the intracellular fluid appear to be the underlying cause of the extremely high gas supersaturation tolerances observed.  相似文献   

12.
Substantial declines of Pacific salmon populations have occurred over the past several decades related to large‐scale anthropogenic and climatic changes in freshwater and marine environments. In the Columbia River Basin, migrating juvenile salmonids may pass as many as eight large‐scale hydropower projects before reaching the ocean; however, the cumulative effects of multiple dam passages are largely unknown. Using acoustic transmitters and an extensive system of hydrophone arrays in the Lower Columbia River, we calculated the survival of yearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passing one, two, or three dams. We applied a unique index of biological characteristics and environmental exposures, experienced by each fish individually as it migrated downstream, in order to examine which factors most influence salmonid survival. High outflow volumes led to involuntary spill in 2011 and created an environment of supersaturated dissolved gas concentrations. In this environment, migrating smolt survival was strongly influenced by barometric pressure, fish velocity, and water temperature. The effect of these variables on survival was compounded by multiple dam passages compared to fish passing a single dam. Despite spatial isolation between dams in the Lower Columbia River hydrosystem, migrating smolt appear to experience cumulative effects akin to a press disturbance. In general, Chinook salmon and steelhead respond similarly in terms of survival rates and responses to altered environmental conditions. Management actions that limit dissolved gas concentrations in years of high flow will benefit migrating salmonids at this life stage.  相似文献   

13.
Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L(-1). Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality.  相似文献   

14.
It is possible to produce a transient supersaturation or undersaturation in tissues and blood by sequentially breathing gases with different equilibration rates. If the ambient gas pressure is sufficiently high, the induced supersaturation can produce vascular bubbles. By means of the classical perfusion-dependent model of inert gas elimination, which assumes that the effects of diffusion are minimal, the magnitude of the total inert gas pressure can be predicted. If, however, the effects of diffusion cannot be ignored, the supersaturation could be substantially larger. This paper estimates the effects of diffusion in a Krogh cylinder on the supersaturation produced by suddenly changing the inert gas partial pressure in the blood. The results of these estimates indicate that diffusion plays a role in this transient supersaturation only in long Krogh cylinders with high blood flows. The effects of diffusion are further reduced by the finite time necessary to switch the inert gases in arterial blood. The conclusions are supported by experiments that measure vascular bubble production after a switch of the inert portion of the inspired gas. These experiments further show that the formation of vascular bubbles after such a switch cannot be entirely explained by the different diffusion constants of the gases used.  相似文献   

15.
16.
Many shallow lakes in north temperate zones experience reduced dissolved oxygen concentration under ice. However, some shallow lakes display supersaturated dissolved oxygen concentrations (>20 mg·L ? 1) in late winter under conditions of maximum ice thickness. During the winters of 1996, 1997, and 1999, we collected phytoplankton samples from Arrowwood Lake near Pingree, North Dakota to determine whether a specific alga was involved in dissolved oxygen supersaturation in this lake. Although dissolved oxygen supersaturation was not observed during this period, we did observe an increase in dissolved oxygen concentration that was associated with a phytoplankton bloom during late February and early March in both 1996 and 1997. In 1996, the bloom was composed of the dinoflagellate, Peridinium aciculiferum (Lemm.) Lemm. and several species of cryptomonads. A similar bloom of P. aciculiferum was followed by a bloom of several species of euglenoids in 1997. In contrast, P. aciculiferum was only a minor component of the winter phytoplankton, dissolved oxygen concentrations remained low, and no bloom event was observed in 1999. Statistical analyses indicated a significant relationship (rs = 0.57, P = 0.019) between dissolved oxygen levels and the density of the dinoflagellate, P. aciculiferum, but no significant relationship between dissolved oxygen levels and densities of other phytoplankton. These results suggest that the elevated levels of dissolved oxygen are associated with the dinoflagellate, P. aciculiferum. This bloom was most likely the result of an excystment event rather than a general growth response.  相似文献   

17.
Cycles of dissolved oxygen (DO) in estuaries can range from anoxia to various levels of supersaturation (200–300%) over short time periods. Aerobic metabolism causes formation of damaging reactive oxygen species (ROS), a process exacerbated by high or low DO. Fish can generate physiological defenses (e.g. antioxidant enzymes) against ROS, however, there are little data tying this to environmental conditions. We investigated physiological defenses generated by estuarine fishes in response to high DO and various DO cycles. We hypothesized that chemical defenses and/or oxidative damage are related to patterns of DO supersaturation. Specific activities of antioxidants in fish tissues should be positively correlated with increasing levels of DO, if high DO levels are physiologically stressful. We caged common benthic fishes (longjaw mudsucker, Gillichthysmirabilis, and staghorn sculpin, Leptocottusarmatus, in CA and spot, Leiostomusxanthurus and pinfish, Lagodonrhomboides, in NC) during summer 1998 in two estuarine sites in southern North Carolina and two in central California. At each site a water quality meter measured bottom DO, salinity, temperature, depth, pH and turbidity at 30 min intervals throughout the study. These sites exhibited a wide variety of dissolved oxygen patterns. After 2 weeks in the cages, fish gills and livers were analyzed for antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) and the metabolite glutathione. All fish exhibited antioxidant enzyme activity. There was a significant site-dependent effect on all enzyme activities at the NC sites, with the most activity at the site with the highest DO cycling and the most DO supersaturation. There was a trend towards higher enzyme activities under high DO levels at the CA sites.  相似文献   

18.
The current study collected the first quantitative data on lateral line pore squamation patterns in sharks and assessed whether divergent squamation patterns are similar to experimental models that cause reduction in boundary layer turbulence. In addition, the hypothesis that divergent orientation angles are exclusively found in fast‐swimming shark species was tested. The posterior lateral line and supraorbital lateral line pore squamation of the fast‐swimming pelagic shortfin mako shark Isurus oxyrinchus and the slow‐swimming epi‐benthic spiny dogfish shark Squalus acanthias was examined. Pore scale morphology and pore coverage were qualitatively analysed and compared. In addition, pore squamation orientation patterns were quantified for four regions along the posterior lateral line and compared for both species. Isurus oxyrinchus possessed consistent pore scale coverage among sampled regions and had a divergent squamation pattern with multiple scale rows directed dorsally and ventrally away from the anterior margin of the pore with an average divergent angle of 13° for the first row of scales. Squalus acanthias possessed variable amounts of scale coverage among the sampled regions and had a divergent squamation pattern with multiple scale rows directed ventrally away from the anterior margin of the pore with an average angle of 19° for the first row of scales. Overall, the squamation pattern measured in I. oxyrinchus fell within the parameters used in the fluid flow analysis, which suggests that this pattern may reduce boundary layer turbulence and affect lateral line sensitivity. The exclusively ventral oriented scale pattern seen in S. acanthias possessed a high degree of divergence but the pattern did not match that of the fluid flow models. Given current knowledge, it is unclear how this would affect boundary layer flow. By studying the relationship between squamation patterns and the lateral line, new insights are provided into sensory biology that warrant future investigation due to the implications for the ecology, morphology and sensory evolution of sharks.  相似文献   

19.
Molecular simulations were used to examine the adsorption of diatomic molecules (nitrogen and oxygen) and similarly sized gases (argon and methane) in pores with van der Waals diameters similar in size to the gas diameters. Idealised carbon nanotubes were used to model generic pores, to better understand the effect of pore diameter on guest adsorption in the absence of defects, specific adsorption sites, or variations in pore diameter that often complicate studies of gas adsorption in other porous materials. Molecular dynamics simulations of open nanotubes show that argon and methane are able to enter tubes whose diameters are slightly smaller than the gas diameters. Diatomic gases are able to enter tubes that are significantly smaller than their kinetic diameters with the molecular axis aligned parallel to the nanotube. The results indicate that size-selective adsorption of these gases is theoretically possible, although differences in pore diameters of only a few tenths of an Angstrom are required. Grand canonical Monte Carlo simulations of a 3.38 Å nanotube indicate significant uptake by argon and oxygen, but not nitrogen or methane. The adsorption of nitrogen and methane gradually increases as the nanotube diameter approaches 4.07 Å, and all gases fully saturate a 4.54 Å nanotube. Of the nanotubes studied, the largest adsorption enthalpy for any gas corresponds to the 4.54 Å nanotube, with significantly lower enthalpies seen in the 5.07 Å nanotube. These results suggest an ideal pore diameter for each gas based on the gas–pore van der Waals interaction energies. Trends in the ideal diameter correlate with the minimum tube diameter accessible to each gas.  相似文献   

20.
Isobaric inert gas counterdiffusion has been demonstrated to produce gas lesions in man (Lambertsen and Idicula, 1975) and lethal gas embolism in animals (Lambertsen, Cunnington and Cowley, 1975). Equations have been derived for the stable-state supersaturation pressures developing at interfaces during inert gas counterdiffusion (Graveset al., 1973). The present analysis is a mathematical treatment of the kinetics of the isobaric counterdiffusion of a pair of gases through a membrane consisting of two layers composed of substances with different diffusion coefficients and solubilities for each of the gases involved. The time to reach the stable supersaturation state due to isobaric counterdiffusion, even when circulatory transport and pulmonary washout times are included, is found to be at least an order of magnitude smaller than the time required for visible bubble formation and tissue distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号