首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldehyde dehydrogenase isozymes (AHD-1 and AHD-5) have been isolated in a highly purified state from extracts of mouse liver mitochondria. The enzymes have distinct subunit sizes, as determined by SDS/polyacrylamide gel electrophoresis: AHD-1, 63,000; AHD-5, 49,000. Gel exclusion chromatography, using sephadex G-200, indicated that both isozymes are dimers, although AHD-1 may also exist as a monomeric form as well. The enzymes exhibited widely divergent kinetic characteristics. The purified allelic forms of AHD-1, AHD-1A (C57BL/6J mice) and AHD-1B (CBA/H mice), exhibited high Km values with acetaldehyde as substrate, 1.4 mM and 0.78 mM respectively, whereas AHD-5 exhibited a low Km value with acetaldehyde of 0.2 microM. In addition, the isozymes exhibited distinct pH optima for catalysis (AHD-1, pH range 6.5-7.5; AHD-5, pH range 8.5-10.0), and were differentially sensitive towards disulphuram inhibition, with 50% inhibition occurring 13 and 0.1 microM for the AHD-1 and AHD-5 isozyme respectively. Based upon the kinetic characteristics, it is suggested that AHD-5 may be the primary enzyme for oxidizing mitochondrial acetaldehyde during ethanol oxidation in vivo.  相似文献   

2.
The catabolism of cytokinins is a vital component of hormonal regulation, contributing to the control of active forms of cytokinins and their cellular distribution. The enzyme catalyzing the irreversible cleavage of N6-side chains from cytokinins is a flavoprotein classified as cytokinin dehydrogenase (CKX, EC 1.5.99.12). CKXs also show low cytokinin oxidase activity, but molecular oxygen is a comparatively poor electron acceptor. The CKX gene family of Arabidopsis thaliana comprises seven members. Four code for proteins secreted to the apoplast, the remainder are not secreted. Two are targeted to the vacuoles and one is restricted to the cytosol. This study presents the purification and characterization of each of these non-secreted CKX enzymes and substrate specificities are discussed with respect to their compartmentation. Vacuolar enzymes AtCKX1 and AtCKX3 were produced in Pichia pastoris and cytosolic enzyme AtCKX7 was expressed in Escherichia coli. The recombinant proteins were purified by column chromatography. All enzymes preferred synthetic electron acceptors over oxygen, namely potassium ferricyanide and 2,3-dimetoxy-5-methyl-1,4-benzoquinone (Q0). In slightly acidic conditions (pH 5.0), N6-(2-isopentenyl)adenine 9-glucoside (iP9G) was the best substrate for AtCKX1 and AtCKX7, whereas AtCKX3 preferentially degraded N6-(2-isopentenyl)adenine 9-riboside-5′-monophosphate (iPMP). Moreover, vacuolar AtCKX enzymes in certain conditions degraded N6-(2-isopentenyl)adenine di- and triphosphates two to five times more effectively than its monophosphate.  相似文献   

3.
Metabolism of nitroglycerin (GTN) to 1,2-glycerol dinitrate (GDN) and nitrite by mitochondrial aldehyde dehydrogenase (ALDH2) is essentially involved in GTN bioactivation resulting in cyclic GMP-mediated vascular relaxation. The link between nitrite formation and activation of soluble guanylate cyclase (sGC) is still unclear. To test the hypothesis that the ALDH2 reaction is sufficient for GTN bioactivation, we measured GTN-induced formation of cGMP by purified sGC in the presence of purified ALDH2 and used a Clark-type electrode to probe for nitric oxide (NO) formation. In addition, we studied whether GTN bioactivation is a specific feature of ALDH2 or is also catalyzed by the cytosolic isoform (ALDH1). Purified ALDH1 and ALDH2 metabolized GTN to 1,2- and 1,3-GDN with predominant formation of the 1,2-isomer that was inhibited by chloral hydrate (ALDH1 and ALDH2) and daidzin (ALDH2). GTN had no effect on sGC activity in the presence of bovine serum albumin but caused pronounced cGMP accumulation in the presence of ALDH1 or ALDH2. The effects of the ALDH isoforms were dependent on the amount of added protein and, like 1,2-GDN formation, were sensitive to ALDH inhibitors. GTN caused biphasic sGC activation with apparent EC(50) values of 42 +/- 2.9 and 3.1 +/- 0.4 microm in the presence of ALDH1 and ALDH2, respectively. Incubation of ALDH1 or ALDH2 with GTN resulted in sustained, chloral hydrate-sensitive formation of NO. These data may explain the coupling of ALDH2-catalyzed GTN metabolism to sGC activation in vascular smooth muscle.  相似文献   

4.
1. The pig enzyme was purified to homogeneity and was found to be a tetramer of apparently identical subunits. 2. The pig enzyme was found to contain 1 mol NADH/mol enzyme which is tightly bound, which is not directly involved in catalysis and which so far has not been removed from the enzyme so as to produce an active apoenzyme. 3. The pig enzyme seems to contain only one functioning active site/tetramer. 4. The pig and sheep enzymes are compared in respect of NADH binding, substrate specificity, immunological response and surface charge.  相似文献   

5.
Liver cytosolic aldehyde dehydrogenases were partially purified from rats with different genetic predisposition to induction of aldehyde dehydrogenase activity by phenobarbital. The enzymes were studied at basal state without any pretreatment with an inducer. The main aldehyde dehydrogenases from the non-, high- and intermediate reactor animals could not be differentiated by substrate specificity or thermostability. The enzyme from the non-reactor rats was more resistant to changes of pH and to the inhibitory effects of disulfiram than the enzymes from the high- or intermediate reactors. Immunochemical studies suggested a dissimilarity of these enzymes.  相似文献   

6.
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is an important enzyme that catalyzes the last step in the synthesis of glycine betaine, a compatible solute accumulated by many plants under various abiotic stresses. In barley ( Hordeum vulgare L.), we reported previously the existence of two BADH genes ( BBD1 and BBD2 ) and their corresponding proteins, peroxisomal BADH (BBD1) and cytosolic BADH (BBD2). To investigate their enzymatic properties, we expressed them in Escherichia coli and purified both proteins. Enzymatic analysis indicated that the affinity of BBD2 for betaine aldehyde was reasonable as other plant BADHs, but BBD1 showed extremely low affinity for betaine aldehyde with apparent Km of 18.9 μ M and 19.9 m M , respectively. In addition, Vmax/Km with betaine aldehyde of BBD2 was about 2000-fold higher than that of BBD1, suggesting that BBD2 plays a main role in glycine betaine synthesis in barley plants. However, BBD1 catalyzed the oxidation of ω-aminoaldehydes such as 4-aminobutyraldehyde and 3-aminopropionaldehyde as efficiently as BBD2. We also found that both BBDs oxidized 4- N -trimethylaminobutyraldehyde and 3- N -trimethylaminopropionaldehyde.  相似文献   

7.
Sheep liver cytoplasmic aldehyde dehydrogenase was purified to homogeneity to give a sample with a specific activity of 380 nmol NADH min(-1) mg(-1). An amino acid analysis of the enzyme gave results similar to those reported for aldehyde dehydrogenases from other sources. The isoelectric point was at pH 5.25 and the enzyme contained no significant amounts of metal ions. On the binding of NADH to the enzyme there is a shift in absorption maximum of NADH to 344 nm, and a 5.6-fold enhancement of nucleotide fluorescence. The protein fluorescence (lambdaexcit = 290 nm, lambdaemisson = 340 nm) is quenched on the binding of NAD+ and NADH. The enhancement of nucleotide fluorescence on the binding of NADH has been utilised to determine the dissociation constant for the enzyme . NADH complex (Kd = 1.2 +/- 0.2 muM). A Hill plot of the data gave a straight line with a slope of 1.0 +/- 0.3 indicating the absence of co-operative effects. Ellman's reagent reacted only slowly with the enzyme but in the presence of sodium dodecylsulphate complete reaction occurred within a few minutes to an extent corresponding to 36 thiol groups/enzyme. Molecular weights were determined for both cytoplasmic and mitochondrial aldehyde dehydrogenases and were 212 000 +/- 8 000 and 205 000 respectively. Each enzyme consisted of four subunits with molecular weight of 53 000 +/- 2 000. Properties of the cytoplasmic and mitochondrial aldehyde dehydrogenases from sheep liver were compared with other mammalian liver aldehyde dehydrogenases.  相似文献   

8.
9.
10.
Previous studies have reported elevated levels of biogenic aldehydes in the brains of patients with Parkinson's disease (PD). In the brain, aldehydes are primarily detoxified by aldehyde dehydrogenases (ALDH). Reduced ALDH1 expression in surviving midbrain dopamine neurons has been reported in brains of patients who died with PD. In addition, impaired complex I activity, which is well documented in PD, reduces the availability of the NAD(+) co-factor required by multiple ALDH isoforms to catalyze the removal of biogenic aldehydes. We hypothesized that chronically decreased function of multiple aldehyde dehydrogenases consequent to exposure to environmental toxins and/or reduced ALDH expression, plays an important role in the pathophysiology of PD. To address this hypothesis, we generated mice null for Aldh1a1 and Aldh2, the two isoforms known to be expressed in substantia nigra dopamine neurons. Aldh1a1(-/-)×Aldh2(-/-) mice exhibited age-dependent deficits in motor performance assessed by gait analysis and by performance on an accelerating rotarod. Intraperitoneal administration of L-DOPA plus benserazide alleviated the deficits in motor performance. We observed a significant loss of neurons immunoreactive for tyrosine hydroxylase (TH) in the substantia nigra and a reduction of dopamine and metabolites in the striatum of Aldh1a1(-/-)×Aldh2(-/-) mice. We also observed significant increases in biogenic aldehydes reported to be neurotoxic, including 4-hydroxynonenal (4-HNE) and the aldehyde intermediate of dopamine metabolism, 3,4-dihydroxyphenylacetaldehyde (DOPAL). These results support the hypothesis that impaired detoxification of biogenic aldehydes may be important in the pathophysiology of PD and suggest that Aldh1a1(-/-)×Aldh2(-/-) mice may be a useful animal model of PD.  相似文献   

11.
1. Kinetic experiments suggested the possible existence of at least two different NAD(+)-dependent aldehyde dehydrogenases in rat liver. Distribution studies showed that one enzyme, designated enzyme I, was exclusively localized in the mitochondria and that another enzyme, designated enzyme II, was localized in both the mitochondria and the microsomal fraction. 2. A NADP(+)-dependent enzyme was also found in the mitochondria and the microsomal fraction and it is suggested that this enzyme is identical with enzyme II. 3. The K(m) for acetaldehyde was apparently less than 10mum for enzyme I and 0.9-1.7mm for enzyme II. The K(m) for NAD(+) was similar for both enzymes (20-30mum). The K(m) for NADP(+) was 2-3mm and for acetaldehyde 0.5-0.7mm for the NADP(+)-dependent activity. 4. The NAD(+)-dependent enzymes show pH optima between 9 and 10. The highest activity was found in pyrophosphate buffer for both enzymes. In phosphate buffer there was a striking difference in activity between the two enzymes. Compared with the activity in pyrophosphate buffer, the activity of enzyme II was uninfluenced, whereas the activity of enzyme I was very low. 5. The results are compared with those of earlier investigations on the distribution of aldehyde dehydrogenase and with the results from purified enzymes from different sources.  相似文献   

12.
We have studied the distribution of the ALDH3A1, ALDH1A1 and ALDH2 proteins in the cornea and stomach of several animal species, including mammals (C57BL/6J and SWR/J mice, rat and pig), birds (chicken and turkey), amphibians (frog) and fish (trout and zebrafish). High ALDH3A1 protein levels and catalytic activities were detected in C57BL/6J mouse, rat and pig. We found complete absence of the ALDH3A1 protein in SWR/J mice, which carry the Aldh3a1c allele characterized by four amino acid substitutions (G88R, I154N, H305R and I352V) and lack of enzymatic activity. This indicates that the SWR/J mouse strain is a natural gene knockout model for ALDH3A1. Traces of ALDH3A1 were detected in rabbit, whereas expression was absent from chicken, turkey, frog, trout, and zebrafish. Interestingly, significant levels of the cytosolic ALDH1A1 and mitochondrial ALDH2 proteins were detected by immunoblot analysis in all examined species that are deficient in ALDH3A1 expression. In contrast, no ALDH1A1 or ALDH2 protein was detected in the species expressing ALDH3A1. It can, therefore, be concluded that corneal expression of ALDH3A1 or ALDH1A1/ALDH2 occurs in a taxon-specific manner, supporting the protective role of these ALDHs in cornea against the UV-induced oxidative damage.  相似文献   

13.
14.
15.
A method for the purification of yeast K+-activated aldehyde dehydrogenase is presented which can be completed in substantially less time than other published procedures. The enzyme has a different N-terminal amino acid from preparations previously reported, and other small differences in amino acid content. These differences may be the result of differential proteolytic digestion rather than a different protein in vivo. A purification step involves the biospecific adsorption on affinity columns containing immobilized nucleotides in the absence of the substrate aldehyde. Direct binding studies with the coenzyme in the absence of aldehyde reveal 4 NAD sites per tetrameric molecule, each with a dissociation constant of 120 micron. These results conflict with properties of preparations previously reported and may conflict with kinetic models that have aldehyde as the leading substrate. Binding to Blue Dextran affinity columns suggests the presence of a dinucleotide fold in common with other dehydrogenases and kinases.  相似文献   

16.
Isoelectric focusing techniques (IEF) were used to examine the tissue distribution and genetic variability of aldehyde dehydrogenases (AHDs) from inbred strains of mice. Twelve zones of AHD activity were resolved which were differentially distributed between tissues. Liver extracts exhibited highest activity for most enzymes, with the exception of isozymes found in stomach (AHD-4) and testis (AHD-4 and AHD-6). Genetic variants for AHD-1 (liver mitochondrial isozyme) and AHD-4 (stomach isozyme) were examined from inbred strains and F1 hybrid animals. The results were consistent with dimeric subunit structures (designated as A2 and D2 isozymes respectively). IEF patterns for activity variants of testis-specific AHD-6 were identical, with 3-banded phenotypes being observed. pI values for the AHD forms as well as for aldehyde oxidase and xanthine oxidase isozymes, which stain in the absence of coenzyme, were reported.  相似文献   

17.
We have studied the distribution of the ALDH3A1, ALDH1A1 and ALDH2 proteins in the cornea and stomach of several animal species, including mammals (C57BL/6J and SWR/J mice, rat and pig), birds (chicken and turkey), amphibians (frog) and fish (trout and zebrafish). High ALDH3A1 protein levels and catalytic activities were detected in C57BL/6J mouse, rat and pig. We found complete absence of the ALDH3A1 protein in SWR/J mice, which carry the Aldh3a1(c) allele characterized by four amino acid substitutions (G88R, I154N, H305R and I352V) and lack of enzymatic activity. This indicates that the SWR/J mouse strain is a natural gene knockout model for ALDH3A1. Traces of ALDH3A1 were detected in rabbit, whereas expression was absent from chicken, turkey, frog, trout, and zebrafish. Interestingly, significant levels of the cytosolic ALDH1A1 and mitochondrial ALDH2 proteins were detected by immunoblot analysis in all examined species that are deficient in ALDH3A1 expression. In contrast, no ALDH1A1 or ALDH2 protein was detected in the species expressing ALDH3A1. It can, therefore, be concluded that corneal expression of ALDH3A1 or ALDH1A1/ALDH2 occurs in a taxon-specific manner, supporting the protective role of these ALDHs in cornea against the UV-induced oxidative damage.  相似文献   

18.
Kathmann EC  Naylor S  Lipsky JJ 《Biochemistry》2000,39(36):11170-11176
Rat liver contains two class 1 aldehyde dehydrogenases (ALDHs): a constitutive isozyme (ALDH1) and a phenobarbital-inducible isozyme (ALDH-PB). Defining characteristics of mammalian class 1 ALDHs include a homotetrameric structure, high expression in liver, sensitivity to the inhibitor disulfiram, and high activity for the oxidation of retinal. It is often presumed that ALDH-PB is the rat ortholog of mammalian ALDH1, and the identity of rat ALDH-PB is commonly interchanged with ALDH1. In this study, we characterized recombinant rat liver cytosolic ALDH1 and ALDH-PB. Previous reports indicate that ALDH-PB is a homodimer; however, we found by mass spectrometry and gel electrophoresis that it is a homotetramer. ALDH1 mRNA was highly expressed in untreated rat liver, while ALDH-PB had very weak expression, in contrast to a previous report that ALDH-PB mRNA is expressed in untreated rat liver. Rat liver ALDH1 had a high affinity for retinal (K(m) = 0.6 microM), while no oxidation by ALDH-PB could be detected with 20 microM retinal. ALDH1 was more efficient at oxidizing acetaldehyde, propionaldehyde, and benzaldehyde and was more sensitive to disulfiram inhibition. We conclude that rat liver ALDH1 is the ortholog of mammalian liver ALDH1. Furthermore, despite a high level of sequence identity and classification as a class 1 ALDH, ALDH-PB does not function like ALDH1. ALDH-PB is not merely an inducible ALDH1 isozyme; it is a distinct ALDH isozyme.  相似文献   

19.
A 'null' activity variant for the major liver isozyme of aldehyde oxidase (AOX-1) in adult male mice and an electrophoretically distinct, high activity variant of the second liver isozyme (AOX-2) were used to examine the segregation of the genetic loci encoding these enzymes (Aox-1 and Aox-2 respectively) in breeding studies. A single recombinant between these loci was observed among the 147 backcross progeny examined, which confirms a previous report (Holmes, 1979) for close linkage and genetic distinctness of the two loci. An activity variant for mouse liver xanthine oxidase (XOX) is also reported which behaved as though controlled by codominant alleles at a single locus (designated Xox-1 ). Genetic analyses showed that the Xox-1 locus segregated independently of the multiple- A ox loci.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号