首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus and Escherichia coli sensitive to chloramphenicol incubated with this antibiotic suffered oxidative stress with increase of anion superoxide (O2-). This reactive species of oxygen was detected by chemiluminescence with lucigenin. S. aureus, E. coli, and Enterococcus faecalis sensitive to ciprofloxacin exhibited oxidative stress when they were incubated with this antibiotic while resistant strains did not show stimuli of O2-. Other bacteria investigated was Pseudomonas aeruginosa, strains sensitive to ceftazidime and piperacillin presented oxidative stress in presence of these antibiotics while resistant strains were not stressed. Higher antibiotic concentration was necessary to augment O2- in P. aeruginosa biofilm than in suspension, moreover old biofilms were resistant to oxidative stress caused by antibiotics. A ceftazidime-sensitive mutant of P. aeruginosa, coming from a resistant strain, exhibited higher production of O2- than wild type in presence of this antibiotic. There was relation between antibiotic susceptibility and production of oxidative stress.  相似文献   

2.
Staphylococcus aureus with multiple sensitivity to ciprofloxacin, was investigated to detect alterations in the production of superoxide anion (O(2)(-)), other reactive oxidant species (ROS), and superoxide dismutase (SOD), and to relate them with ciprofloxacin accumulation and sensitivity. Oxidative stress was studied by means of Nitroblue Tetrazolium reaction (NBT) and chemiluminescence (CL); lucigenin was employed to detect O(2)(-), and luminol was used to measure other ROS. Sensitive strains exhibited higher intracellular O(2)(-) increase than resistant ones when incubated with ciprofloxacin. SOD was determined in normal conditions and induction was investigated in the presence of ciprofloxacin. These assays demonstrated that resistant and sensitive strains exported a great amount of SOD and that the induction of SOD intracellular was insufficient to counteract the augment of O(2)(-) in the cytoplasm of sensitive strains. Accumulation of ciprofloxacin, researched by spectrofluorometry, showed high levels of antibiotic in sensitive strains which increased the O(2)(-) causing more oxidative stress than in resistant S. aureus.  相似文献   

3.
The isocoumarins (1-50 microM) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin isolated from Paepalanthus bromelioides, were assessed for antioxidant activity using isolated rat liver mitochondria and non-mitochondrial systems, and compared with the flavonoid quercetin. The paepalantine and paepalantine dimers, but not vioxanthin, were effective at scavenging both 1,1-diphenyl-2-picrylhydrazyl (DPPH(*)) and superoxide (O(2)(-)) radicals in non-mitochondrial systems, and protected mitochondria from tert-butylhydroperoxide-induced H(2)O(2) accumulation and Fe(2+)-citrate-mediated mitochondrial membrane lipid peroxidation, with almost the same potency as quercetin. These results point towards paepalantine, followed by paepalantine dimer, as being a powerful agent affording protection, apparently via O(2)(-) scavenging, from oxidative stress conditions imposed on mitochondria, the main intracellular source and target of those reactive oxygen species. This strong antioxidant action of paepalantine was reproduced in HepG2 cells exposed to oxidative stress condition induced by H(2)O(2).  相似文献   

4.
Migration and superoxide anion (O2-) generation were studied in polymorphonuclear leukocytes (PMNs) from 14 athyreotic patients, previously treated by total thyroidectomy and radioiodine therapy for differentiated thyroid carcinoma, and from age- and sex-matched euthyroid healthy controls. Patients were studied twice: in hypothyroidism (visit 1) and after TSH-suppressive L-T4 replacement therapy (visit 2). Random migration and N-formyl-Met-Leu-Phe (fMLP) 0.1-microM induced chemotaxis were similar in cells from patients at both visit 1 and visit 2 and from healthy controls. On the contrary, resting O2- generation in cells from patients was significantly lower than control values, both at visit 1 and 2. At visit 1, fMLP 0.1 muM-induced O2- generation was significantly lower than control values, while phorbol-myristate acetate (PMA) 100-ng/ml induced O2- generation was similar in cells from patients and from controls. At visit 2 both responses increased, resulting in fMLP-induced O2- generation superimposable to control values and PMA-induced O2- generation significantly higher with respect to both visit 1 and cells from controls. In vitro exposure of PMNs from healthy subjects to L-T4 did not affect O2- generation in resting cells, and significantly increased that induced by fMLP or PMA only at high, supra-physiological concentrations. Neither TSH nor T3 had significant effects at any of the concentrations tested. The present results document the existence of a correlation between thyroid status and oxidative metabolism of human PMNs, which is however unlikely to depend upon a direct action of thyroid hormones on these cells.  相似文献   

5.
Bimetallic nanoparticles consisting of gold and platinum were prepared by a citrate reduction method and complementarily stabilized with pectin (CP-Au/Pt). The percent mole ratio of platinum was varied from 0 to 100%. The CP-Au/Pt were alloy-structured. They were well dispersed in water. The average diameter of platinum nanoparticles (CP-Pt) was 4.7 +/- 1.5 nm. Hydrogen peroxide (H(2)O(2)) was quenched by CP-Au/Pt consisting of more than 50% platinum whereas superoxide anion radical (O(2)(-)) was quenched by any CP-Au/Pt. The CP-Au/Pt quenched these two reactive oxygen species in dose-dependent manners. The CP-Pt is the strongest quencher. The CP-Pt decomposed H(2)O(2) and consequently generated O(2) like catalase. The CP-Pt actually quenched O(2)(-) which was verified by a superoxide dismutase (SOD) assay kit. This quenching activity against O(2)(-) persisted like SOD. Taken together, CP-Pt may be a SOD/catalase mimetic which is useful for medical treatment of oxidative stress diseases.  相似文献   

6.
We reported earlier that monocytes and macrophages from patients with type I Gaucher disease have a decreased capacity to generate superoxide anion (O(2)(-)) on stimulation with opsonized S. aureus or formyl-methionyl-leucyl-phenylalanine. In this study, various forms of the cell-free assay system were used to probe the hypothesis that glucocerebroside (GC) accumulating in Gaucher patients' phagocytes may interfere with the activation of NADPH oxidase. Xanthine/xanthine oxidase assay was applied to explore the possibility that GC may scavenge O(2)(-). We found that addition of GC to the crude, semirecombinant or fully purified cell-free systems inhibited activation of NADPH oxidase in a concentration-dependent manner. The inhibitory effect of GC could be overcome by increased concentrations of p47(phox) and p67(phox). In contrast, O(2)(-) generation was not decreased by GC added to the assembled, catalytically active enzyme complex. In the xanthine/xanthine oxidase system, GC had no effect on the generation of O(2)(-). These data indicate that assembly of the respiratory burst oxidase of phagocytic cells may be a possible target of the pathologic actions of GC.  相似文献   

7.
Awe SO  Adeagbo AS 《Life sciences》2002,71(11):1255-1266
tert-Butyl hydroperoxide (t-BOOH), an inducer of oxidative stress in vitro, elicits constrictor responses of the isolated, rat kidney and mesenteric arteries perfused (5 ml/min) with physiological salt solutions (PSS) at 37 degrees C gassed with carbogen. We hypothesized that generation of superoxide anions (O(2)(-)) accounts for these responses. We assessed responses to t-BOOH in preparations with/without endothelium, and in the absence/presence of antioxidant compounds, catalase and tempol, scavengers of hydroxyl (OH(-)) radical and O(2)(-), respectively. t-BOOH (0.01-50 micromol) induced (expressed as % of 50 micromol KCl vasoconstriction) were abolished by endothelium denudation, perfusion with Ca(2+)-free PSS and by nifedipine, (1 nM). Infusion of t-BOOH (0.1 microM) did not significantly (P > 0.05) affect phenylepherine E(max) in the mesenteric arteries, however it reduced phenylepherine E(max) responses in the kidney from 94.9 +/- 3.9 % to 64.7 +/- 4.7 %. Nitroblue tetrazolium, as well as alpha-phenyl N-tert-butyl nitrone, at 100 microM, but not catalase (500 IU) significantly attenuated t-BOOH (10 micromol) vasoconstrictor responses. Tempol (100 microM), a membrane permeable antioxidant, also significantly reduced t-BOOH (10 micromol) responses from 17.0 +/- 1.9 % (control) to 9.6 +/- 0.5 % (+tempol) in the mesenteric arteries and from 40.4 +/- 4.2 % (control) to 20.7 +/- 1.5 % (+tempol) in the kidney. Our data suggest that t-BOOH elicits vasoconstriction via two distinct mechanisms: (i) increased influx of extracellular Ca(2+), and (ii) generation of free radicals including O(2)(-) anions.  相似文献   

8.
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an enzyme of phagocytes that produces bactericidal superoxide anion (O(2)(-)) via an electrogenic process. Proton efflux compensates for the charge movement across the cell membrane. The proton channel responsible for the H(+) efflux was thought to be contained within the gp91(phox) subunit of NADPH oxidase, but recent data do not support this idea (DeCoursey, T.E., V.V. Cherny, D. Morgan, B.Z. Katz, and M.C. Dinauer. 2001. J. Biol. Chem. 276:36063-36066). In this study, we investigated electrophysiological properties and superoxide production of COS-7 cells transfected with all NADPH oxidase components required for enzyme function (COS(phox)). The 7D5 antibody, which detects an extracellular epitope of the gp91(phox) protein, labeled 96-98% of COS(phox) cells. NADPH oxidase was functional because COS(phox) (but not COS(WT)) cells stimulated by phorbol myristate acetate (PMA) or arachidonic acid (AA) produced superoxide anion. No proton currents were detected in either wild-type COS-7 cells (COS(WT)) or COS(phox) cells studied at pH(o) 7.0 and pH(i) 5.5 or 7.0. Anion currents that decayed at voltages positive to 40 mV were the only currents observed. PMA or AA did not elicit detectable H(+) current in COS(WT) or COS(phox) cells. Therefore, gp91(phox) does not function as a proton channel in unstimulated cells or in activated cells with a demonstrably functional oxidase.  相似文献   

9.
The antioxidant and hepatoprotective actions of Terminalia catappa L. collected from Okinawa Island were evaluated in vitro and in vivo using leaves extract and isolated antioxidants. A water extract of the leaves of T. catappa showed a strong radical scavenging action for 1,1-diphenyl-2-picrylhydrazyl and superoxide (O(2)(.-)) anion. Chebulagic acid and corilagin were isolated as the active components from T. catappa. Both antioxidants showed a strong scavenging action for O(2)(.-) and peroxyl radicals and also inhibited reactive oxygen species production from leukocytes stimulated by phorbol-12-myristate acetate. Galactosamine (GalN, 600 mg/kg, s.c.,) and lipopolysaccharide (LPS, 0.5 microg/kg, i.p.)-induced hepatotoxicity of rats as seen by an elevation of serum alanine aminotransferase, aspartate aminotransferase and glutathione S-transferase (GST) activities was significantly reduced when the herb extract or corilagin was given intraperitoneally to rats prior to GalN/LPS treatment. Increase of free radical formation and lipid peroxidation in mitochondria caused by GalN/LPS treatment were also decreased by pretreatment with the herb/corilagin. In addition, apoptotic events such as DNA fragmentation and the increase in caspase-3 activity in the liver observed with GalN/LPS treatment were prevented by the pretreatment with the herb/corilagin. These results show that the extract of T. catappa and its antioxidant, corilagin are protective against GalN/LPS-induced liver injury through suppression of oxidative stress and apoptosis.  相似文献   

10.
Mutations in a mitochondrial or nuclear gene encoding respiratory chain complex I subunits lead to decreased or a total absence of complex I activity. Plant mutants with altered or lost complex I activity adapt their respiratory metabolism by inducing alternative pathways of the respiratory chain and changing energy metabolism. Apparently, complex I is a crucial component of the oxidation-reduction (redox) regulatory system in photosynthetic cells, and alternative NAD(P)H dehydrogenases of the mitochondrial electron transport chain (mtETC) cannot fully compensate for its impairment. In most cases, dysfunction of complex I is associated with lowered or unchanged hydrogen peroxide (H(2)O(2)) concentrations, but increased superoxide (O(2)(-)) levels. Higher production of reactive oxygen species (ROS) by mitochondria in the mosaic (MSC16) cucumber mutant may be related to retrograde signalling. Different effects of complex I dysfunction on H(2)O(2) and O(2)(-) levels in described mutants might result from diverse regulation of processes involved in H(2)O(2) and O(2)(-) production. Often, dysfunction of complex I did not lead to oxidative stress, but increased the capacity of the antioxidative system and enhanced stress tolerance. The new cellular homeostasis in mutants with dysfunction of complex I allows growth and development, reflecting the plasticity of plant metabolism.  相似文献   

11.
When polymorphonuclear leukocytes are treated with soluble and particulate substances the cells produce superoxide anion O2-. which plays a role in the activation of the oxidative metabolism. The time-course of O2-. release and the extent to which the anion is produced are related to the nature of the stimulating agents. Anti-inflammatory non steroid drugs, such as indomethacin and oxamethacin, exert a variable depression of the oxidative burst, which does not seem correlated to the inhibition of prostaglandin synthesis.  相似文献   

12.
Lung macrophages may play a relevant role in oxidative processes producing both superoxide anion (O(2)(-)) and NO. In this view, an antioxidant therapy can be useful in the treatment of systemic sclerosis (SSc) patients. N-Acetylcysteine (NAC) is able to expand natural antioxidant defenses by increasing intracellular gluthatione concentration and it has been proposed as an antioxidant therapy in respiratory distress syndromes. The aim of our study was to determine whether lung macrophages obtained from SSc patient bronchoalveolar lavage (BAL) express the inducible form of nitric oxide synthase (iNOS) and whether NAC can reduce the peroxynitrite (ONOO(-)) and O(2)(-) production of these cells. Alveolar macrophages were isolated from BAL of 32 patients and used for the immunocytochemical determination of iNOS, and the production of ONOO(-) and O(2)(-) was measured by fluorimetric or spectrophotometric methods, respectively. Lung macrophages obtained from SSc patients expressed a higher level of iNOS compared to healthy subject cells. NAC preincubation (5 x 10(-5)M, 24h) significantly reduced (-21%) the ONOO(-) production in formyl Met-Leu-Phe (fMLP)-activated cells and slightly reduced it under resting conditions, whereas NAC preincubation was unable to modify the release of O(2)(-) both in basal condition and in fMLP-stimulated cells. We conclude that since SSc lung macrophages express high levels of iNOS and produce a significant quantity of ONOO(-), NAC administration reduces ONOO(-) production and can be an useful treatment to alleviate SSc symptoms.  相似文献   

13.
We examined the participation of the superoxide anion radical (O(2)(-)) in the beneficial effects of L-ascorbic acid on heat-induced fish gel (Kamaboko). The generation of a thiyl radical (S.) in glutathione, ovalbumin, and actomyosin was examined by electron spin resonance spectroscopy coupled with spin trapping. O(2)(-) was provided by the photoactivation of riboflavin. The typical line shape for S. was observed with the glutathione and ovalbumin samples. A signal different from that for S. was detected with the actomyosin sample, and its intensity markedly decreased when the SH groups of actomyosin had been modified. The signal was eliminated when superoxide dismutase was added, but unaffected when catalase or an equivalent amount of heat-inactivated superoxide dismutase or catalase were added. These results suggest that S. in actomyosin was produced by the reaction with O(2)(-) and that the beneficial effects of L-ascorbic acid are due to a different mechanism in Kamaboko from that in bread.  相似文献   

14.
《Luminescence》2003,18(6):334-340
Oxidative stress induced by ciprofloxacin and pyoverdin, a leukotoxic pigment, was studied by comparing their effect in bacteria and leukocytes. Chemiluminescence (CL) assays with lucigenin or luminol were adapted to measure the stimuli of superoxide anion (O2?) and other reactive species of oxygen (ROS) in bacteria. Ciprofloxacin principally induced the production of O2? in the three species studied: Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. Lucigenin CL assay showed high oxidative stress in S. aureus due to its low superoxide dismutase (SOD) activity, whereas E. coli exhibited important SOD activity, responsible for little production of O2? in absence or presence of ciprofloxacin. Reduction of nitroblue of tetrazolium (NBT) was applied. This assay indicated that there was higher oxidative stress in S. aureus and E. faecalis than in E. coli. The comparison of oxidative stress generated in bacteria and leukocytes was used to check the selective toxicity of ciprofloxacin in comparison with pyoverdin. Ciprofloxacin did not generate significant stimuli of O2? in neutrophils, while pyoverdin duplicated the production of O2?. CL and NBT were useful to study the leukotoxicity of ciprofloxacin. Oxidative stress caused by the antibiotic and the leukotoxic pigment was similar in bacteria. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this study was to evaluate population-related peculiarities of the adaptive responses of Carassius auratus gibelio. In order to do this, male specimens from polluted (B) and clean (Z) sites were exposed to commercial pesticides thiocarbamate Tatoo (9.1 μg·L(-1)and 91 μg·L(-1)) or tetrazine Apollo (2 μg·L(-1) and 10 μg·L(-1)) during fourteen days. The control fish from site B was distinguished by weakness of antioxidant defence (measured from superoxide dismutase and catalase activities, redox index of glutathione (GSH), superoxide anion (O(2)) and lipid peroxidation levels), imbalance of the concentrations of protein metallothionein (MT-SH) and MT-related metals (MT-Me) and neurotoxicity. Differences in glutathione-S-transferase activity in the liver and vitellogenin-like proteins in the serum were also showed between B and Z control groups. Common effects of pesticides were related to a decrease in GSH, an increase in O(2) production, ethoxyresorufin O-deethylase activity and hepatosomatic index. Apollo provoked particular elevation of MT-SH/MT-Me ratio. Population-related difference in the response was the activation of antioxidant defence in fish from site B and its inhibition in fish from site Z. The genotoxic effect of exposures was more expressed in fish from site B. Principal component analysis combine all exposed groups from site Z and control group from site B in one set, and separated each exposed group from site B. The main distinguishing index of each population selected by classification and regression tree analysis was MT-SH.  相似文献   

16.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

17.
Activation of the delta-isoform of protein kinase C (deltaPKC) by certain conditions of oxidative stress results in translocation of the kinase to the mitochondria leading to release of cytochrome c and the induction of apoptosis. In the current study, the effects of myocardial reperfusion-induced deltaPKC translocation on mitochondrial function were assessed. Mitochondria isolated from hearts that had undergone ischemia (30 min) followed by reperfusion (15 min) exhibited a significant increase in the rate of superoxide anion (O(2)(-)) generation. This was associated with the translocation of deltaPKC to the mitochondria within the first 5 min of reperfusion. deltaPKC translocation occurred exclusively during reperfusion and could be mimicked by infusion of intact hearts with H(2)O(2) suggesting redox-dependent activation during reperfusion. Infusion of a peptide inhibitor (deltaV(1-1)) specific to the delta-isoform of PKC significantly reduced reperfusion-induced increases in mitochondrial O(2)(-) generation. Finally, the decline in mitochondrial respiratory activity evident upon prolonged reperfusion (120min) was completely prevented by inhibition of deltaPKC translocation. Thus, deltaPKC represents a cytosolic redox-sensitive molecule that plays an important role in amplification of O(2)(-) production and subsequent declines in mitochondrial function during reperfusion.  相似文献   

18.
Mitochondria are the major source of superoxide (O(2)(-)) in the aerobic organisms. O(2)(-) produced by the mitochondria is converted to hydrogen peroxide by mitochondrial superoxide dismutase (SOD2). Mice with complete SOD2 deficiency (SOD2(-/-)) exhibit dilated cardiomyopathy and fatty liver leading to neonatal mortality, whereas mice with partial SOD2 deficiency (SOD2(+/-)) show evidence of O(2)(-)-induced mitochondrial damage resembling cell senescence. Since earlier studies have provided compelling evidence for the role of oxidative stress and tubulointerstitial inflammation in the pathogenesis of hypertension, we tested the hypothesis that partial SOD2 deficiency may result in hypertension. Wild-type (SOD2(+/+)) and partial SOD2-deficient (SOD2(+/-)) mice had similar blood pressures at 6-7 mo of age, but at 2 yr SOD2(+/-) mice had higher blood pressure. Oxidative stress, renal interstitial T-cell and macrophage infiltration, tubular damage, and glomerular sclerosis were all significantly increased in 2-yr-old SOD2(+/-) mice. High-salt diet induced hypertension in 6-mo-old SOD2-deficient mice but not in wild-type mice. In conclusion, partial SOD2 deficiency results in oxidative stress and renal interstitial inflammation, changes compatible with accelerated renal senescence and salt-sensitive hypertension. These findings are consistent with the pattern described in numerous other models of salt-sensitive hypertension and resemble that commonly seen in elderly humans.  相似文献   

19.
The effect of the arbuscular mycorrhizal (AM) fungus, Glomus versiforme, on growth and reactive oxygen metabolism of trifoliate orange (Poncirus trifoliata) seedlings was studied in potted plants under well-watered (WW) and water stressed (WS) conditions. Water stress significantly decreased root colonization. Shoot dry weight, plant height and stem diameter were higher in AM than in non-AM seedlings regardless of the water status. Inoculation with G. versiforme increased root dry weight and leaf number per plant of WW seedlings. There was less malondialdehyde (MDA) concentration in leaves and roots of AM seedlings, as well as lower hydrogen peroxide (H(2)O(2)) and superoxide anion radical (O(2)(-)) concentrations in AM roots under WW and WS conditions. AM inoculation did not affect the H(2)O(2) and O(2)(-) concentrations of WW leaves. Whether WS or not, AM symbiosis notably increased the guaiacol peroxidase (G-POD) activity of leaves, glutathione reductase (GR) activity of leaves and ascorbate peroxidase (APX) activity of roots. AM infection also markedly increased the APX activity of WS leaves. Soluble proteins and glutathione (GSH) in leaves and roots and ascorbate (ASC) in leaves were higher in WW AM than in WW non-AM seedlings. AM infection also enhanced the ASC and GSH contents of leaves and roots in WS seedlings. Cross-tolerance might occur in AM plants and be enhanced by AM symbiosis. Our results suggest that the increased concentrations of antioxidant enzymes and non-enzymatic antioxidants found in AM plants may serve to protect the organism against oxidative damage, enhancing drought tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号