首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dilute solutions of sulfhydryl enzymes (phosphoglyceraldehyde dehydrogenase, adenosinetriphosphatase, succinoxidase) showed reduced activity on irradiation by small amounts of x-rays. When the inhibition was partial the enzyme was reactivated on addition of glutathione. When the inhibition was more complete, reactivation was only partial. These observations are interpreted as being due to oxidation of the -SH groups of the protein by the products of water irradiation, the radicals OH and O(2)H, and H(2)O(2) and atomic oxygen. The irreversible inhibition which occurs when the dose of x-rays is increased is attributed to protein denaturation. Inhibition of the non-sulfhydryl enzymes trypsin, catalase, and ribonuclease, which required larger amounts of x-rays, is attributed to protein denaturation. These experiments are further evidence that inhibition of enzymes by ionizing radiations is due to the indirect action of the products of irradiated water rather than to direct ionization of the enzyme through collision with the ionizing radiation.  相似文献   

2.
The pressure denaturation of trypsin from bovine pancreas was investigated by fluorescence spectroscopy in the pressure range 0. 1-700 MPa and by FTIR spectroscopy up to 1000 MPa. The tryptophan fluorescence measurements indicated that at pH 3.0 and 0 degrees C the pressure denaturation of trypsin is reversible but with a large hysteresis in the renaturation profile. The standard volume changes upon denaturation and renaturation are -78 mL.mol-1 and +73 mL.mol-1, respectively. However, the free energy calculated from the data in the compression and decompression directions are quite different in absolute values with + 36.6 kJ.mol-1 for the denaturation and -5 kJ. mol-1 for the renaturation. For the pressure denaturation at pH 7.3 the tryptophan fluorescence measurement and enzymatic activity assays indicated that the pressure denaturation of trypsin is irreversible. Interestingly, the study on 8-anilinonaphthalene-1-sulfonate (ANS) binding to trypsin under pressure leads to the opposite conclusion that the denaturation is reversible. FTIR spectroscopy was used to follow the changes in secondary structure. The pressure stability data found by fluorescence measurements are confirmed but the denaturation was irreversible at low and high pH in the FTIR investigation. These findings confirm that the trypsin molecule has two domains: one is related to the enzyme active site and the tryptophan residues; the other is related to the ANS binding. This is in agreement with the study on urea unfolding of trypsin and the knowledge of the molecular structure of trypsin.  相似文献   

3.
Acid-washed and heat-treated river sand was separated into different fractions by geochemical methods and immobilization of trypsin was carried out on the separated fractions using 3-aminopropyltriethoxysilane and glutaraldehyde. Scanning Electron Micrographs of the purified fraction (Sp. gr >2.5 and <2.8) of magnetically non-susceptible sand and quartz showed that the enzyme could be fixed on the supports. Malonic acid (16.3 nmol and 16.7nmol per g) appeared to be bound to alkylamine purified fraction of magnetically non-susceptible sand and alkylamine quartz, respectively. Studies on the effect of 6 M guanidine.HCl on immobilized trypsin demonstrated that immobilized trypsin had considerable stability against denaturation. The results obtained indicated that magnetically non-susceptible sand was found to be nearly as good as quartz for trypsin immobilization and that trypsin was covalently coupled to sand via 3-aminopropyltriethoxysilane and glutaraldehyde.  相似文献   

4.
We have used a bubble column apparatus to study interfacial inactivation of enzymes. The amount of enzyme inactivated was proportional to the area of organic solvent exposed, as is characteristic of the interfacial mechanism. Tests were made with a series of 12 solvents of log P close to 4.0, but with different functional groups. With - and β-chymotrypsin, inactivation was much less severe with amphiphilic molecules like decyl alcohol, than with less polar compounds (heptane as the extreme case). This corresponds to a correlation with aqueous–organic interfacial tension, and presumably reflects a more polar interface as seen by the enzyme adsorbing from the aqueous phase. A 50% mixture of decyl alcohol and heptane behaved similarly to pure decyl alcohol, which would be expected to accumulate at the interface. With pig liver esterase, the correlation was rather weak, however. Accumulated data for interfacial inactivation by alkanes was examined for the above enzymes, and also papain, trypsin, urease and ribonuclease. The differing sensitivities did not show a clear correlation with any enzyme property, although there was some relationship to adiabatic compressibility, thermal denaturation temperature and mean hydrophobicity.  相似文献   

5.
The interaction of trypsin with an acid polysaccharide, heparin, at pH 4.2 and 8.0 is studied. Heparin is found to destabilize the enzyme under condition of both autolytic denaturation (pH 8.0) and thermoinactivation (pH 4.2). Data on trypsin inactivation kinetics suggest that the stage of forming molecular complexes with different contents of trypsin and heparin precedes the stage of the enzyme denaturation. Maximal trypsin inactivation rate takes place under equimolar enzyme:heparin ration.  相似文献   

6.
Cross-flow microfiltration is an important step in separating Baker’s yeast (Saccharomyces cerevisiae) from aqueous suspension in many processes. However the permeate flux often declines rapidly due to colloidal fouling of membranes and concentration polarisation. The present work explores the possibility of maintaining acceptable permeate flux by co-current sparging of gas along with the feed, which would scour away colloidal deposits and reduce concentration polarisation of membranes. In this work, both washed and unwashed yeast were used to study the effect of washing to reduce protein fouling of membranes. It was found that permeate flux increased by 45% for liquid throughput of 75 kg/h for a feed concentration of 2.0 kg/m3 of washed yeast as compared with unwashed yeast suspension without gas sparging. For washed yeast suspension, the increase in gas flow rate from 0.5 lpm to 1.5 lpm (30 l/h to 90 l/h) had beneficial effect on permeate flux. It is concluded that in the present case, the gas flow rate should be less than or equal to the liquid flow rate for enhancement of permeates flux.  相似文献   

7.
Antibody to normal mouse catalase will stabilize blood and liver catalase of the acatalasemic mouse against a variety of agents which damage protein tertiary structure (urea, guanidine, trypsin) but not against agents which affect the heme group (azide, hydroxylamine). The antibody will also stabilize catalase against inhibition by 3-amino 1,2,4-triazole (AT), the specific site of action of which is known. The antibody is able also to protect normal mouse catalase from urea denaturation, but it is without effect on AT inhibition of normal catalase. A hypothesis is proposed which explains these results and which helps localize the site of the mutation on the catalase molecule.Work supported by the U.S. Atomic Energy Commission.  相似文献   

8.
The irreversible thermal denaturation of the association complexes of bovine beta-trypsin with soybean trypsin inhibitor or ovomucoid was observed with a differential scanning calorimeter. Association of trypsin with either inhibitor results in increased heat stability. The largest effect is observed with beta-trypsin and soybean trypsin inhibitor. At pH 6.7, first order rate constants (s-1) for denaturation at 72 degrees, determined at a heating rate of 10 degrees per min, are: beta-trypsin, 30 times 10-3; soybean trypsin inhibitor, 9 times 10-3; trypsin-soybean trypsin inhibitor complex, 0.4 times 10-3. Under equivalent conditions, rate constants for ovomucoid and trypsin-ovomucoid complex are 4 times 10-3 and 1 times 10-3 s-1, respectively. These changes in rate correspond to heat stabilization of trypsin equivalent to an increase of 16 and 9 degrees, respectively, in its observed denaturation temperature. Rate constants determined for beta-trypsin and trypsin-soybean trypsin inhibitor complex are independent of heating rate; those for soybean trypsin inhibitor and ovomucoid are a function of heating rate. This suggests that predenaturational conformational alterations may be important steps in the denaturation of the inhibitors. Activation energies for denaturation of the complexes and their components are all similar, averaging 70 kcal per mol. The large activation energies observed suggest that denaturation of the complexes is not rate-limited by their dissociation.  相似文献   

9.
The precipitation of crude beef liver catalase at 4°C by the lower alcohols could be correlated in a manner analogous to that used for salting out precipitations with ammonium sulfate. At high alcohol concentrations, however, the analogy breaks down since denaturation effects must betaken into account Depending upon the concentration of the alcohol and temperature, the denaturation transition may be either thermally induced or solvent induced. When the precipitated enzyme was redissolved in buffer, not all forms could refold spontaneously to a catalytically active conformation. The data on the precipitation yields of catalase correlated well with denaturation diagrams previously developed. Thus, a quantitative basis could be established to relate the sensitive performance of the technique to the experimental conditions. A further correlation between the amino-acid composition of the enzyme and the optimal concentration of alcohol required for precipitation may provide a guide for the extension of this work to other systems.  相似文献   

10.
The DNA 3'-phosphatase activity of rat-liver chromatin has been purified. A DNA 5'-hydroxyl kinase activity comigrates at each step of purification. Both enzymes have the same molecular mass (79 kDa) and the same isoelectric point (8.6). It thus seems that the two activities are born by the same protein just as with the phage T4 enzyme which is, at the same time, a 5'-hydroxyl kinase and a 3'-phosphatase. An additional argument is that ATP, which does not influence the rate of the 3'-phosphatase reaction but which is a cosubstrate of the 5'-hydroxyl kinase, protects the 3'-phosphatase activity against thermal denaturation and trypsin digestion. The two active sites must, however, be largely independent within a common support: the thermal denaturation and trypsin inactivation rates are very different for the two activities; increasing the ionic strength activates the kinase and inhibits the phosphatase; polyvalent anions inhibit the phosphatase and have little effect on the kinase. The two active sites might belong to different domains of the protein; they could not however be separated by a partial trypsin digestion. The rates of 3'-dephosphorylation and 5'-phosphorylation by the chromatin enzyme are the same in native and denatured DNA. The 3'-phosphatase has no action on 3'-monodeoxynucleotide, but it hydrolyzes the 3'-phosphate in dinucleotides. The Km of the 3'-phosphatase is 0.548 microM. The Km (5'-OH) and Km (ATP) of the 5'-hydroxyl kinase are about 3.9 microM and 0.69 microM respectively. The chromatin enzyme is unable to hydrolyze 3'-phosphoglycolate ends in DNA.  相似文献   

11.
B Badet  D Roise  C T Walsh 《Biochemistry》1984,23(22):5188-5194
The pyridoxal phosphate dependent Salmonella typhimurium dadB alanine racemase was inactivated with D- and L-beta-fluoroalanine, D- and L-beta-chloroalanine, and O-acetyl-D-serine. Enzyme inactivation with each isomer of beta-chloro[14C]alanine followed by NaBH4 reduction and trypsin digestion afforded a single radiolabeled peptide. In the same manner, NaB3H4-reduced native enzyme gave a single labeled peptide after trypsin digestion. Purification and sequencing of these three radioactive peptides revealed them to be a common, unique hexadecapeptide which contained labeled lysine at position 6 in each case. Enzyme which had been inactivated, but not reductively stabilized with NaBH4, released a labile pyridoxal phosphate-inactivator adduct on denaturation. The structure of this adduct suggests that the enzyme was inactivated by trapping the coenzyme in a ternary adduct with inactivator and the active site lysine. Under denaturing conditions, facile alpha,beta-elimination occurred, releasing the aldol adduct of pyruvate and pyridoxal phosphate. Reduction of the ternary enzyme adduct blocked this elimination pathway. The overall mechanism of racemase inactivation is discussed in light of these results.  相似文献   

12.
In the presence of intact Hymenolepis diminuta, trypsin was inactivated; intact worms had no apparent effect on subtilisin, pepsin, or papain. Inactivation of trypsin was demonstrable using azoalbumin as a substrate, but the inactivated enzyme retained full catalytic activity against benzoyl-DL-arginine-p-nitroanilide, p-tosyl-L-arginine methyl ester (low molecular weight synthetic trypsin substrates) and p-nitro-p-guanidinobenzoate (an active site titrant). Inactivation was not reversible under conditions of heating, freezing and thawing, or prolonged dialysis of the enzyme. Analyses of inactivated 3H-trypsin by cationic and SDS-polyacrylamide gel electrophoresis, and gel chromatography failed to indicate the presence of a high molecular weight trypsin inhibitor associated with the inactivated enzyme; no low molecular weight, dissociable inhibitor was demonstrable following thermal denaturation of the inactivated enzyme. Analyses of trypsin after incubation in the presence of pulse-labeled worms also failed to demonstrate the presence of any inhibitor of worm origin associated with the inactivated enzyme. The data suggest that inactivation is the result of a small structural or conformational change in the enzyme molecule, a change which partially (rather than totally) inactivates the enzyme towards protein substrates.  相似文献   

13.
The dissociation of porcine erythrocyte catalase [EC 1.11.1.6] into subunits on denaturation with alkali, GuHCl and urea was investigated by following the changes in hydrodynamic properties, absorption and CD spectra in the Soret region and inactivation of the enzyme. It was found that dissociation proceeded in an "all or none" manner from the native tetramer (molecular weight, ca. 250,000) into identical 1/4-sized monomers (molecular weight, ca. 54,000 with alkali, 65,000 with urea and 71,000 with GuHCl) as estimated by ultracentrifugal analyses. On this dissociation, the sedimentation coefficient decreased from about 11S to 5.1 - 3.7S, and absorption spectra in the Soret region decreased to about 40% of the native level and showed a broad band around 365-375 nm and a shoulder around 415-420 nm; these changes were accompanied by complete loss of enzyme activity. The change in enzyme activity correlated well with that of absorption and CD spectra in the Soret region, depending on denaturation time, alkaline pH used and concentration of both denaturants. The reassociated catalase obtained by removing urea by dialysis was characterized by recovery of distinct CD bands in the Soret and near ultraviolet regions, although the partial refolding of alpha-helical conformation occurred without recovery of enzyme activity. These results indicate that the conformational changes and dissociation process of catalase into subunits can be monitored spectrophotometrically in relation to enzyme activity, and that subtle conformations near the heme groups and polypeptide backbone play an important role in maintaining full enzyme activity of the catalase molecule.  相似文献   

14.
Recovery of 2,3‐butanediol from a fermentation broth entails the separation of cells and other suspended solids as the initial step for subsequent separation stages. The aim of this work was to study the cross‐flow filtration of broth in the fermentation of 2,3‐butanediol from blackstrap molasses by Klebsiella oxytoca (NRRL B‐199). A plate type laboratory scale cross‐flow microfiltration unit with a 0.2‐μm cellulose acetate membrane was employed for this purpose. Preliminary results showed that the permeate flux would decline rapidly due to fouling caused by the natural impurities of blackstrap molasses, and modifications of the conventional cross‐flow filtration would be essential to achieve a filtration rate appropriate for practical purposes. In this work, the permeate flux was enhanced by air sparging, which scoured the membrane surface of colloidal deposits and allowed a practical filtration rate to be maintained. The average permeate flux increased by 39 % and 54 % for an air sparging rate of 0.5 L/min and 1.0 L/min respectively, in the case of an initial biomass concentration of 4.66 g/L. For an initial biomass concentration of 14.2 g/L, the flux increased by 105 % and 146 % for the gas rate of 0.5 and 1.0 L/min, respectively. It may be concluded that gas sparging is beneficial in cross‐flow filtration of thick suspensions like a fermentation broth.  相似文献   

15.
Summary Colloidal gas aphrons or CGAs were employed in a flotation column for the recovery of yeast from aqueous solutions. The CGAs sparging rate was a critical factor that governed the efficiency of the process. The separation efficiency was less than 30% at a sparging rate of 1.3 ml sec–1 and increased exponentially up to 90% as the sparging rate was increased to 2.4 ml sec–1. Whereas there was no appreciable change in the separation efficiency with CGAs sparging rates for high initial feed concentrations, the maximum achievable efficiency decreased with an increase in the initial feed concentration. In general, a decrease in pH will improve the separation efficiency.  相似文献   

16.
An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC‐TR), which crosslinks additional trypsin molecules onto covalently attached trypsin (CA‐TR). EC‐TR showed better stability than CA‐TR in rigorous conditions, such as at high temperatures of 40 and 50°C, in the presence of organic co‐solvents, and at various pH's. For example, the half‐lives of CA‐TR and EC‐TR were 1.42 and 231 h at 40°C, respectively. The improved stability of EC‐TR can be explained by covalent linkages on the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40°C by using both CA‐TR and EC‐TR in digesting a model protein, enolase. EC‐TR showed better performance and stability than CA‐TR by maintaining good performance of enolase digestion under recycled uses for a period of 1 week. In the same condition, CA‐TR showed poor performance from the beginning and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes. Biotechnol. Bioeng. 2010;107: 917–923. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Bovine pancreatic trypsin was chemically modified by a beta-cyclodextrin-carboxymethylcellulose polymer using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as coupling agent. The conjugate retained 110% and 95% of the initial esterolytic and proteolytic activity, respectively, and contained about 2 mol of polymer per mol of trypsin. The optimum temperature for trypsin was increased to 8 degrees C after conjugation. The thermostability of the enzyme was increased to about 16 degrees C after modification. The conjugate prepared was also more stable against thermal incubation at different temperatures ranging from 45 degrees C to 60 degrees C. In comparison with native trypsin, the polymer-enzyme complex was more resistant to autolytic degradation at pH 9.0, retaining about 65% of the initial activity after 3h incubation. In addition, modification protected trypsin against denaturation in the presence of sodium dodecylsulfate.  相似文献   

18.
Several enzymic and physical properties of Sepharose-bound trypsin and activated Sepharose-bound trypsinogen have been compared to those of the soluble enzyme. Sepharose-bound trypsinogen could be activated to the same extent as soluble trypsinogen; the release of the activation peptide and formation of the active site occurred as expected in the presence of catalytic amounts of trypsin. With synthetic substrates, the relative activity and pH dependence of both immobilized trypsin preparations were essentially identical and nearly the same as the soluble enzyme. Sepharose-trypsin also formed an inactive complex with soybean trypsin inhibitor, with 85% of the active sites participating. In contrast, the activity of Sepharose-trypsin with chymotrypsinogen and with trypsinogen as substrates was only 40% that of soluble trypsin. There is evidence for some catalytic heterogeneity of active sites of bound trypsin; probably those sites buried within the gel have a limited catalytic efficiency with macromolecular substrates. The immobilized enzyme is more stable than the soluble enzyme at elevated temperatures and to concentrated urea, and denaturation by urea at pH 8 is fully reversible since the loss of molecules by autolysis is eliminated.  相似文献   

19.
Studies on the lipozyme-catalyzed synthesis of butyl laurate   总被引:4,自引:0,他引:4  
The effects of temperature, speed of agitation, enzyme concentration, etc., on butyl laurate synthessis using Mucor miehei lipase (Lipozymetrade mark) have been studied. Although the soluble enzyme was quite thermcstable in aqeous solution, it deactivated rapidly at and above 40 degrees C in the presence of butanol. This enzyme immobilized on an anion-exchange resin (Lipozymetrade mark) showed enhanced stability (as compared to the soluble form) to denaturation by butanol under the same conditions. The denaturation of M. miehei lipase was found to be a function of the butanol concentration in the aqueous phase, and rapid denaturation takes place at the concentration corresponding to its saturation at that temperature. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
Native horse serum butyrylcholinesterase (acylcholine acylhydrolase; EC 3.1.1.8) is a tetrameric enzyme which can dissociate after a limited proteolysis by trypsin into three additional molecular forms, including the monomeric entity. The trypsin-generated monomer of butyrylcholinesterase, isolated by ultracentrifugation on sucrose gradient, is stable and allows the relations between the polymeric structure of butyrylcholinesterase and its kinetic characteristics to be approached, e.g., substrate activation and complex thermal denaturation curves. The trypsin-generated monomer of butyrylcholinesterase behaves with identical kinetic parameter values as the native tetrameric enzyme. On the other hand, the thermal denaturation of the native tetrameric butyrylcholinesterase does not follow first-order kinetics, but may be described by a sum of exponential terms. This behavior is not due to the polymeric nature of butyrylcholinesterase but seems to be related to a structural heterogeneity induced by the heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号