首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lymphocytes respond to antigen receptor engagement with tyrosine phosphorylation of many cellular proteins, some of which have been identified and functionally characterized. Here we describe SH3P7, a novel substrate protein for Src and Syk family kinases. SH3P7 migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 55-kDa protein that is preferentially expressed in brain, thymus, and spleen. It contains multiple amino acid sequence motifs, including two consensus tyrosine phosphorylation sites of the YXXP type and one SH3 domain. A region of sequence similarity, which we named SCAD, was found in SH3P7 and three actin-binding proteins. The SCAD region may represent a new type of protein-protein interaction domain that mediates binding to actin. Consistent with this possibility, SH3P7 colocalizes with actin filaments of the cytoskeleton. Altogether, our data implicate SH3P7 as an adapter protein which links antigen receptor signaling to components of the cytoskeleton.  相似文献   

2.
《The Journal of cell biology》1993,120(6):1417-1426
Two related cellular proteins, p80 and p85 (cortactin), become phosphorylated on tyrosine in pp60src-transformed cells and in cells stimulated with certain growth factors. The amino-terminal half of cortactin is comprised of multiple copies of an internal, tandem 37- amino acid repeat. The carboxyl-terminal half contains a distal SH3 domain. We report that cortactin is an F-actin-binding protein. The binding to F-actin is specific and saturable. The amino-terminal repeat region appears to be both necessary and sufficient to mediate actin binding, whereas the SH3 domain had no apparent effect on the actin- binding activity. Cortactin, present in several different cell types, is enriched in cortical structures such as membrane ruffles and lamellipodia. The properties of cortactin indicate that it may be important for microfilament-membrane interactions as well as transducing signals from the cell surface to the cytoskeleton. We suggest the name cortactin, reflecting the cortical subcellular localization and its actin-binding activity.  相似文献   

3.
Kim K  Hou P  Gorski JL  Cooper JA 《Biochemistry》2004,43(9):2422-2427
Mutations in faciogenital dysplasia protein (Fgd1) result in the human disease faciogenital dysplasia (FGDY). Fgd1 contains a RhoGEF domain specific for Cdc42. Fgd1 also contains a Src homology (SH3) binding domain (SH3-BD) that binds directly to the SH3 domain of cortactin, which promotes actin assembly by actin-related protein (Arp)2/3 complex. Here, we report the effect of ligation of cortactin's SH3 domain by the Fgd1 SH3-BD on actin polymerization in vitro. Glutathione S-transferase (GST)-fused Fgd1 SH3-BD enhanced the ability of cortactin to stimulate Arp2/3-mediated actin polymerization. However, a synthetic peptide containing only the SH3-BD sequence had no effect. The SH3-BD peptide bound to cortactin and inhibited the effect of GST-Fgd1 SH3-BD, suggesting that GST dimerization was responsible for the stimulating effect of GST-Fgd1 SH3-BD. When GST-Fgd1 SH3-BD was prepared as a heterodimer with a control GST fusion protein (GST-Pac1), no stimulatory effect on actin polymerization was observed. In addition, when cortactin was dimerized via its N-terminus, away from the C-terminal SH3 domain, actin polymerization with Arp2/3 complex increased markedly, compared to free cortactin. Thus, cortactin ligated by Fgd1 is fully active, indicating that the cell can use Fgd1 to target actin assembly. Moreover, if Fgd1 is multimerized, then cortactin's activity should be enhanced. Fgd1 and cortactin may participate as scaffolds and signal transducers in a positive feedback cycle to promote actin assembly at the cell cortex.  相似文献   

4.
We report here an interaction between the C terminus of the rat somatostatin receptor subtype 2 (SSTR2) and a protein that has recently been identified as cortactin-binding protein 1 (CortBP1). Interaction is mediated by the PDZ (PSD-95/discs large/ZO-1) domain of CortBP1. As shown by in situ hybridization, SSTR2 and cortactin-binding protein are coexpressed in the rat brain. The association between SSTR2 and the PDZ-domain of CortBP1 was verified by overlay assays and by coprecipitation after transfection in human embryonic kidney (HEK) cells. Analysis by confocal microscopy indicates that CortBP1 is distributed diffusely throughout the cytosol in transfected cells and that it becomes concentrated at the plasma membrane when SSTR2 is present. This process is largely increased when the receptor is stimulated by somatostatin; as CortBP1 interacts with the C terminus of SSTR2, our data suggest that the binding of agonist to the receptor increase the accessibility of the receptor C terminus to the PDZ domain of CortBP1. Our data for the first time establish a link between a G-protein coupled receptor and constituents of the cytoskeleton.  相似文献   

5.
Cortactin is an actin-binding protein that is enriched within the lamellipodia of motile cells and in neuronal growth cones. Here, we report that cortactin is localized with the actin-related protein (Arp) 2/3 complex at sites of actin polymerization within the lamellipodia. Two distinct sequence motifs of cortactin contribute to its interaction with the cortical actin network: the fourth of six tandem repeats and the amino-terminal acidic region (NTA). Cortactin variants lacking either the fourth tandem repeat or the NTA failed to localize at the cell periphery. Tandem repeat four was necessary for cortactin to stably bind F-actin in vitro. The NTA region interacts directly with the Arp2/3 complex based on affinity chromatography, immunoprecipitation assays, and binding assays using purified components. Cortactin variants containing the NTA region were inefficient at promoting Arp2/3 actin nucleation activity. These data provide strong evidence that cortactin is specifically localized to sites of dynamic cortical actin assembly via simultaneous interaction with F-actin and the Arp2/3 complex. Cortactin interacts via its Src homology 3 (SH3) domain with ZO-1 and the SHANK family of postsynaptic density 95/dlg/ZO-1 homology (PDZ) domain-containing proteins, suggesting that cortactin contributes to the spatial organization of sites of actin polymerization coupled to selected cell surface transmembrane receptor complexes.  相似文献   

6.
Using the yeast two hybrid system we have identified a novel protein termed somatostatin receptor interacting protein (SSTRIP) from human brain which interacts with the rat somatostatin receptor subtype 2. Interaction with the receptor C-terminus is mediated by a PSD-95/discs large/ZO-1 (PDZ) domain which exhibits high similarity to the PDZ domain of cortactin binding protein 1 (CortBP1). SSTRIP and CortBP1 define a novel family of multidomain proteins containing ankyrin repeats, SH3- and SH3 binding regions and a sterile alpha motif (SAM domain) in addition to the PDZ domain. Both SSTRIP and CortBP1 can be co-immunoprecipitated with the somatostatin receptor when co-expressed in HEK cells. Interestingly, co-localization of SSTR2 and CortBP1 at the plasma membrane is increased when SSTR2 is stimulated by agonists.  相似文献   

7.
The dynamin family of large GTPases has been implicated in the formation of nascent vesicles in both the endocytic and secretory pathways. It is believed that dynamin interacts with a variety of cellular proteins to constrict membranes. The actin cytoskeleton has also been implicated in altering membrane shape and form during cell migration, endocytosis, and secretion and has been postulated to work synergistically with dynamin and coat proteins in several of these important processes. We have observed that the cytoplasmic distribution of dynamin changes dramatically in fibroblasts that have been stimulated to undergo migration with a motagen/hormone. In quiescent cells, dynamin 2 (Dyn 2) associates predominantly with clathrin-coated vesicles at the plasma membrane and the Golgi apparatus. Upon treatment with PDGF to induce cell migration, dynamin becomes markedly associated with membrane ruffles and lamellipodia. Biochemical and morphological studies using antibodies and GFP-tagged dynamin demonstrate an interaction with cortactin. Cortactin is an actin-binding protein that contains a well defined SH3 domain. Using a variety of biochemical methods we demonstrate that the cortactin-SH3 domain associates with the proline-rich domain (PRD) of dynamin. Functional studies that express wild-type and mutant forms of dynamin and/or cortactin in living cells support these in vitro observations and demonstrate that an increased expression of cortactin leads to a significant recruitment of endogenous or expressed dynamin into the cell ruffle. Further, expression of a cortactin protein lacking the interactive SH3 domain (CortDeltaSH3) significantly reduces dynamin localization to the ruffle. Accordingly, transfected cells expressing Dyn 2 lacking the PRD (Dyn 2(aa)DeltaPRD) sequester little of this protein to the cortactin-rich ruffle. Interestingly, these mutant cells are viable, but display dramatic alterations in morphology. This change in shape appears to be due, in part, to a striking increase in the number of actin stress fibers. These findings provide the first demonstration that dynamin can interact with the actin cytoskeleton to regulate actin reorganization and subsequently cell shape.  相似文献   

8.
BACKGROUND: Modulation of actin cytoskeleton assembly is an integral step in many cellular events. A key regulator of actin polymerization is Arp2/3 complex. Cortactin, an F-actin binding protein that localizes to membrane ruffles, is an activator of Arp2/3 complex. RESULTS: A yeast two-hybrid screen revealed the interaction of the cortactin Src homology 3 (SH3) domain with a peptide fragment derived from a cDNA encoding a region of WASp-Interacting Protein (WIP). GST-cortactin interacted with WIP in an SH3-dependent manner. The subcellular localization of cortactin and WIP coincided at the cell periphery. WIP increased the efficiency of cortactin-mediated Arp2/3 complex activation of actin polymerization in a concentration-dependent manner. Lastly, coexpression of cortactin and WIP stimulated membrane protrusions. CONCLUSIONS: WIP, a protein involved in filopodia formation, binds to both actin monomers and cortactin. Thus, recruitment of actin monomers to a cortactin-activated Arp2/3 complex likely leads to the observed increase in cortactin activation of Arp2/3 complex by WIP. These data suggest that a cortactin-WIP complex functions in regulating actin-based structures at the cell periphery.  相似文献   

9.
In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions.  相似文献   

10.
Actin polymerization plays a critical role in clathrin-mediated endocytosis in many cell types, but how polymerization is regulated is not known. Hip1R may negatively regulate actin assembly during endocytosis because its depletion increases actin assembly at endocytic sites. Here, we show that the C-terminal proline-rich domain of Hip1R binds to the SH3 domain of cortactin, a protein that binds to dynamin, actin filaments and the Arp2/3 complex. We demonstrate that Hip1R deleted for the cortactin-binding site loses its ability to rescue fully the formation of abnormal actin structures at endocytic sites induced by Hip1R siRNA. To determine when this complex might function during endocytosis, we performed live cell imaging. The maximum in vivo recruitment of Hip1R, clathrin and cortactin to endocytic sites was coincident, and all three proteins disappeared together upon formation of a clathrin-coated vesicle. Finally, we showed that Hip1R inhibits actin assembly by forming a complex with cortactin that blocks actin filament barbed end elongation.  相似文献   

11.
LC Kelley  SA Weed 《PloS one》2012,7(8):e44363

Background

Epidermal growth factor receptor (EGFR) internalization following ligand binding controls EGFR downstream pathway signaling activity. Internalized EGFR is poly-ubiquitinated by Cbl to promote lysosome-mediated degradation and signal downregulation. ACK1 is a non-receptor tyrosine kinase that interacts with ubiquitinated EGFR to facilitate EGFR degradation. Dynamic reorganization of the cortical actin cytoskeleton controlled by the actin related protein (Arp)2/3 complex is important in regulating EGFR endocytosis and vesicle trafficking. How ACK1-mediated EGFR internalization cooperates with Arp2/3-based actin dynamics during EGFR downregulation is unclear.

Methodology/Principal Findings

Here we show that ACK1 directly binds and phosphorylates the Arp2/3 regulatory protein cortactin, potentially providing a direct link to Arp2/3-based actin dynamics during EGFR degradation. Co-immunoprecipitation analysis indicates that the cortactin SH3 domain is responsible for binding to ACK1. In vitro kinase assays demonstrate that ACK1 phosphorylates cortactin on key tyrosine residues that create docking sites for adaptor proteins responsible for enhancing Arp2/3 nucleation. Analysis with phosphorylation-specific antibodies determined that EGFR-induced cortactin tyrosine phosphorylation is diminished coincident with EGFR degradation, whereas ERK1/2 cortactin phosphorylation utilized in promoting activation of the Arp2/3 regulator N-WASp is sustained during EGFR downregulation. Cortactin and ACK1 localize to internalized vesicles containing EGF bound to EGFR visualized by confocal microscopy. RNA interference and rescue studies indicate that ACK1 and the cortactin SH3 domain are essential for ligand-mediated EGFR internalization.

Conclusions/Significance

Cortactin is a direct binding partner and novel substrate of ACK1. Tyrosine phosphorylation of cortactin by ACK1 creates an additional means to amplify Arp2/3 dynamics through N-WASp activation, potentially contributing to the overall necessary tensile and/or propulsive forces utilized during EGFR endocytic internalization and trafficking involved in receptor degradation.  相似文献   

12.
Type I myosins in yeast, Myo3p and Myo5p (Myo3/5p), are involved in the reorganization of the actin cytoskeleton. The SH3 domain of Myo5p regulates the polymerization of actin through interactions with both Las17p, a homolog of mammalian Wiskott-Aldrich syndrome protein (WASP), and Vrp1p, a homolog of WASP-interacting protein (WIP). Vrp1p is required for both the localization of Myo5p to cortical patch-like structures and the ATP-independent interaction between the Myo5p tail region and actin filaments. We have identified and characterized a new adaptor protein, Mti1p (Myosin tail region-interacting protein), which interacts with the SH3 domains of Myo3/5p. Mti1p co-immunoprecipitated with Myo5p and Mti1p-GFP co-localized with cortical actin patches. A null mutation of MTI1 exhibited synthetic lethal phenotypes with mutations in SAC6 and SLA2, which encode actin-bundling and cortical actin-binding proteins, respectively. Although the mti1 null mutation alone did not display any obvious phenotype, it suppressed vrp1 mutation phenotypes, including temperature-sensitive growth, abnormally large cell morphology, defects in endocytosis and salt-sensitive growth. These results suggest that Mti1p and Vrp1p antagonistically regulate type I myosin functions.  相似文献   

13.
The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes.  相似文献   

14.
Abplp is a yeast cortical actin-binding protein that contains an SH3 domain similar to those found in signal transduction proteins that function at the membrane/cytoskeleton interface. Although no detectable phenotypes are associated with a disruption allele of ABP1, mutations that create a requirement for this protein have now been isolated in the previously identified gene SAC6 and in two new genes, SLA1 and SLA2. The SAC6 gene encodes yeast fimbrin, an actin filament-bundling protein. Null mutations in SLA1 and SLA2 cause temperature-sensitive growth defects. Sla1p contains three SH3 domains and is essential for the proper formation of the cortical actin cytoskeleton. The COOH terminus of Sla2p contains a 200 amino acid region with homology to the COOH terminus of talin, a membrane cytoskeletal protein which is a component of fibroblast focal adhesions. Sla2p is required for cellular morphogenesis and polarization of the cortical cytoskeleton. In addition, synthetic-lethal interactions were observed for double- mutants containing null alleles of SLA2 and SAC6. In total, the mutant phenotypes, sequences, and genetic interactions indicate that we have identified novel proteins that cooperate to control the dynamic cytoskeletal rearrangements that are required for the development of cell polarity in budding yeast.  相似文献   

15.
CMS/CD2AP is a cytoplasmic protein critical for the integrity of the kidney glomerular filtration and the T cell function. CMS contains domains and motifs characteristic for protein-protein interactions, and it is involved in the regulation of the actin cytoskeleton. We report here that the individual SH3 domains of CMS bind to phosphotyrosine proteins of approximately 80, 90, and 180 kDa in cell lysates stimulated with epidermal growth factor. The second SH3 domain of CMS bound specifically to a tyrosine-phosphorylated protein of 120 kDa, which we identified as the proto-oncoprotein c-Cbl. The c-Cbl-binding site for CMS mapped to the carboxyl terminus of c-Cbl and is different from the proline-rich region known to bind SH3-containing proteins. CMS binding to c-Cbl was markedly attenuated in a tyrosine phosphorylation-defective c-Cbl mutant indicating that this interaction is dependent on the tyrosine phosphorylation of CMS. It also implies that CMS interacts with c-Cbl in an inducible fashion upon stimulation of a variety of cell-surface receptors. Immunofluorescence analysis revealed that both proteins colocalize at lamellipodia and leading edges of cells, and we propose that the interaction of CMS with c-Cbl offers a mechanism by which c-Cbl associates and regulates the actin cytoskeleton.  相似文献   

16.
Cortactin, a multi-domain scaffolding protein involved in actin polymerization, is enriched in podosomes induced by phorbol ester in vascular smooth muscle cells. We generated several functional and truncation mutants of cortactin to probe the roles of various protein interaction domains in the regulation of the dynamics of podosome formation. At the onset of podosome genesis, cortactin clustered near the ends of stress fibers that appeared to act as nucleation platforms onto which the actin polymerization machinery assembled. Translocation of cortactin to these pre-podosome clusters required the intact N-WASp-binding SH3 domain. Overexpression of the C-terminal third of cortactin containing the intact SH3 domain inhibited podosome formation presumably by sequestering of N-WASp and prevented cortactin clustering. Subsequent assembly of the actin-rich core of podosomes required translocation of additional cortactin to the actin core, a process that required the actin-binding repeats, but not the Arp2/3-binding N-terminal acidic region nor the SH3 domain. These results suggest that the SH3 domain and the actin-binding repeat region are involved, respectively, in the early and late stages of podosome formation process.  相似文献   

17.
Yeast Abp1p is a cortical actin cytoskeleton protein implicated in cytoskeletal regulation, endocytosis, and cAMP-signaling. We have identified a gene encoding a mouse homologue of Abp1p, and it is identical to SH3P7, a protein shown recently to be a target of Src tyrosine kinases. Yeast and mouse Abp1p display the same domain structure including an N-terminal actin-depolymerizing factor homology domain and a C-terminal Src homology 3 domain. Using two independent actin-binding domains, mAbp1 binds to actin filaments with a 1:5 saturation stoichiometry. In stationary cells, mAbp1 colocalizes with cortical F-actin in fibroblast protrusions that represent sites of cellular growth. mAbp1 appears at the actin-rich leading edge of migrating cells. Growth factors cause mAbp1 to rapidly accumulate in lamellipodia. This response can be mimicked by expression of dominant-positive Rac1. mAbp1 recruitment appears to be dependent on de novo actin polymerization and occurs specifically at sites enriched for the Arp2/3 complex. mAbp1 is a newly identified cytoskeletal protein in mice and may serve as a signal-responsive link between the dynamic cortical actin cytoskeleton and regions of membrane dynamics.  相似文献   

18.
Hepatocyte growth factor (HGF) attenuates agonist-induced endothelial cell (EC) permeability and increases pulmonary endothelial barrier function via Rac-dependent enhancement of the peripheral actin cytoskeleton. However, the precise mechanisms of HGF effects on the peripheral cytoskeleton are not well understood. This study evaluated a role for Rac/Cdc42-specific guanine nucleotide exchange factor Asef and the multifunctional Rac effector, IQGAP1, in the mechanism of HGF-induced EC barrier enhancement. HGF induced Asef and IQGAP1 co-localization at the cell cortical area and stimulated formation of an Asef-IQGAP1 functional protein complex. siRNA-induced knockdown of Asef or IQGAP1 attenuated HGF-induced EC barrier enhancement. Asef knockdown attenuated HGF-induced Rac activation and Rac association with IQGAP1, and it abolished both IQGAP1 accumulation at the cell cortical layer and IQGAP1 interaction with actin cytoskeletal regulators cortactin and Arp3. Asef activation state was essential for Asef interaction with IQGAP1 and protein complex accumulation at the cell periphery. In addition to the previously reported role of the IQGAP1 RasGAP-related domain in the Rac-dependent IQGAP1 activation and interaction with its targets, we show that the IQGAP1 C-terminal domain is essential for HGF-induced IQGAP1/Asef interaction and Asef-Rac-dependent activation leading to IQGAP1 interaction with Arp3 and cortactin as a positive feedback mechanism of IQGAP1 activation. These results demonstrate a novel feedback mechanism of HGF-induced endothelial barrier enhancement via Asef/IQGAP1 interactions, which regulate the level of HGF-induced Rac activation and promote cortical cytoskeletal remodeling via IQGAP1-Arp3/cortactin interactions.  相似文献   

19.
We have identified a novel gene, EMSl, that is consistently amplified and overexpressed in human carcinomas with an amplification of the chromosome 11q13 region. Comparisons of the EMSl sequences with those present in the GenBank databases revealed a high identity with chicken cortactin. Southern and western blot analyses confirm the high sequence conservation during evolution. An antiserum specific for human cortactin, showed in gene transfer experiments that both human p80 and p85 isoforms are encoded by the EMSl cDNA. Further comparisons demonstrated an high sequence and structural homology with HSl that is implicated in signal transduction in lymphoid cells only. Expression of EMSl/cortactin mRNA was restricted to tumor cell lines derived from non-lymphoid origin. Cortactin contains (i) a filamentous actin binding tandem repeat domain, (ii) a proline-rich SH3-binding and (iii) a SH3 domain that is common in proteins involved in signal transduction. Our data suggest that human EMSl/cortactin has a function in signal transmission between cell-matrix contact sites and the cytoskeleton and, as such, its overexpression due to 11q13 amplification might effect adhesive properties of human carcinomas.  相似文献   

20.
Kv1.3 channels play a pivotal role in the activation and migration of T-lymphocytes. These functions are accompanied by the channels'' polarization, which is essential for associated downstream events. However, the mechanisms that govern the membrane movement of Kv1.3 channels remain unclear. F-actin polymerization occurs concomitantly to channel polarization, implicating the actin cytoskeleton in this process. Here we show that cortactin, a factor initiating the actin network, controls the membrane mobilization of Kv1.3 channels. FRAP with EGFP-tagged Kv1.3 channels demonstrates that knocking down cortactin decreases the actin-based immobilization of the channels. Using various deletion and mutation constructs, we show that the SH3 motif of Kv1.3 mediates the channel immobilization. Proximity ligation assays indicate that deletion or mutation of the SH3 motif also disrupts interaction of the channel with cortactin. In T-lymphocytes, the interaction between HS1 (the cortactin homologue) and Kv1.3 occurs at the immune synapse and requires the channel''s C-terminal domain. These results show that actin dynamics regulates the membrane motility of Kv1.3 channels. They also provide evidence that the SH3 motif of the channel and cortactin plays key roles in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号