首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manufacture of nitroorganic explosives generates toxic wastes leading to contamination of soils and waters, especially groundwater. For that reason bacteria living in environments highly contaminated with 2,4,6-trinitrotoluene (TNT) and other nitroorganic compounds were investigated for their capacity for TNT degradation. One isolate, Raoultella terrigena strain HB, removed TNT at concentrations between 10 and 100 mg l−1 completely from culture supernatants under optimum aerobic conditions within several hours. Only low concentrations of nutrient supplements were needed for the cometabolic transformation process. Radioactivity measurements with ring-labelled 14C–TNT detected about 10–20% of the initial radioactivity in the culture supernatant and the residual 80–90% as water-insoluble organic compounds in the cellular pellet. HPLC analysis identified aminodinitrotoluenes (2-ADNT, 4-ADNT) and diaminonitrotoluenes (2,4-DANT) as the metabolites which remained soluble in the culture medium and azoxy-dimers as the main products in the cell extracts. Hence, the new isolate could be useful for the removal of TNT from contaminated waters.  相似文献   

2.
The degradation of the nitroaromatic pollutant 2,4,6-trinitrotoluene (TNT) by the manganese-dependent peroxidase (MnP) of the white-rot fungus Phlebia radiata and the main reduction products formed were investigated. In the presence of small amounts of reduced glutathione (10 mM), a concentrated cell-free preparation of MnP from P. radiata exhibiting an activity of 36 nkat/ml (36 nmol Mn(II) oxidized per sec and per ml) transformed 10 mg/l of TNT within three days. The same preparation was capable of completely transforming the reduced derivatives of TNT. When present at 10 mg/l, the aminodinitrotoluenes were transformed in less than two days and the diaminonitrotoluenes in less than three hours. Experiments with 14C-U-ring labeled TNT and 2-amino-4,6-dinitrotoluene showed that these compounds were mineralized by 22% and 76%, respectively, within 5 days. Higher concentrations of reduced glutathione (50 mM) led to a severe inhibition of the degradation process. It is concluded that Phlebia radiata is a good candidate for the biodegradation of TNT as well as its reduction metabolites.  相似文献   

3.
The explosive 2,4,6-trinitrotoluene (TNT), one of the most abundant and persistent contaminants at former armament factories and military sites, was cometabolically reduced by sludge (mixed culture) from a sewage plant in order to facilitate mineralization in a subsequent photochemical treatment. Under aerobic conditions, the main reduction products were aminodinitrotoluenes (ADNTs). A greater amount of the nitroaromatics (ca. 30%) was adsorbed by the sludge as was shown by a complete balance of the process using 14C-TNT. Under anaerobic conditions, TNT was further converted into ADNTs and diaminonitrotoluenes (DANTs) while only negligible adsorption to the sludge occured.  相似文献   

4.
Energetic compounds have been used in a variety of industrial and military applications worldwide leading to widespread environmental contamination. Many of these compounds are toxic and resist degradation by oxidative enzymes resulting in a need for alternative remediation methods. It has been shown that trinitrotoluene (TNT)-contaminated soil subjected to treatment in strictly anaerobic bioreactors results in tight binding of TNT transformation products to soil organic matter. The research presented here examined the fate of TNT and its metabolites in bioreactors under three different aeration regimes. In all treatment regimes, the typical metabolites of aminodinitrotoluenes and diaminonitrotoluenes were observed prior to irreversible binding into the soil fraction of the slurry. Significant transformation of TNT into organic acids or simple diols, as others report in prior work, was not observed in any of the treatments and is an unlikely fate of TNT in anaerobic soil slurries. These results indicate that aeration does not dramatically affect transformation or fate of TNT in reactor systems that receive a rich carbon source but does affect the rate at which metabolites become tightly bound to the soil. The most rapid transformations and lowest redox potentials were observed in reactors in which an aerobic headspace was maintained suggesting that aerobes play a role in establishing conditions that are most conducive to TNT reduction.  相似文献   

5.
Up to 200 mg 2,4,6-trinitrotoluene (TNT) l–1 was removed within 12 h after adding it to a 5-day old culture of Irpex lacteus. The initial formation of hydroxylamino-dinitrotoluenes (2- and 4-OHAmDNT) from TNT was detected, followed by their successive transformation to aminodinitrotoluenes (2- and 4-AmDNT). Transformation of TNT to AmDNT via OHAmDNT was fast, but the next step was slow and seemed to be a rate-limiting step in TNT degradation. OHAmDNT isomers were also rapidly transformed by an in vitro enzymatic system. Both the mycelium and extracellular enzymes of I. lacteus were required for the TNT degradation.  相似文献   

6.
Two composting systems were compared on a laboratory scale as a bioredediation technology for degradation or immobilization of 2,4,6-trinitrotoluene (TNT) in contaminated soils. The first compost was aerated from the beginning whereas the second compost was only aerated after an anaerobic prephase of 65 days. In the first compost system the TNT concentration declined rapidly by 92% but, at the end, TNT could be partially recovered. During the anaerobic prephase of the second compost system, TNT was almost completely converted to aminodinitrotoluenes, which during the subsequent aeration almost entirely disappeared. In addition, the second compost generated less toxic material than the first one as confirmed by inhibition of bioluminescence ofVibrio fischeri. These data show that microbiological TNT-degradation systems can be successfully designed which are prerequisite for an efficient bioremediation of contaminated soils.  相似文献   

7.
Zaripov  S. A.  Naumov  A. V.  Nikitina  E. V.  Naumova  R. P. 《Microbiology》2002,71(5):558-562
A new model for the initial transformation of 2,4,6-trinitrotoluene (TNT) by facultatively anaerobic and aerobic yeasts is presented. The model is based on the data that Saccharomyces sp. ZS-A1 was able to reduce the nitrogroups of TNT with the formation of 2- and 4-hydroxyaminodinitrotoluenes (2-HADNT and 4-HADNT) as the major early TNT metabolites (the molar HADNT/TNT ratio reached 0.81), whereas aminodinitrotoluenes (ADNTs) and the hydride-Meisenheimer complex of TNT (H-TNT) were the minor products. Candidasp. AN-L13 almost completely transformed TNT into H-TNT through the reduction of the aromatic ring. Candida sp. AN-L14 transformed TNT through a combination of the two mechanisms described. Aeration stimulated the production of HADNT from TNT, whereas yeast incubation under stationary conditions promoted the formation of HADNT. The transformation of TNT into HADNT led to a tenfold increase in the acute toxicity of the TNT preparation with respect to Paramecium caudatum, whereas the increase in the toxicity was about twofold in the case of the alternative attack at the aromatic ring.  相似文献   

8.
Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective   总被引:2,自引:0,他引:2  
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

9.
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

10.
The degradation of 2,4,6-trinitrotoluene (TNT) by seven strains of white rot fungi was examined in two different media containing 50 mg L−1 of TNT. When TNT was added into a nutrient-rich YMG medium at the beginning of the incubation, four of the fungal strains completely removed TNT during several days of incubation and showed higher removal rates than those of Phanerochaete chrysosporium. TNT added into YMG medium after a 5-day preincubation period completely disappeared within 12 hours, and the removal rates were higher than those in N-limited minimal medium. Isomers of hydroxylamino-dinitrotoluene were identified as the first detectable metabolites of TNT. These were transformed to amino-dinitrotoluenes, which also disappeared during further incubation from cultures of Irpex lacteus. During the initial phase of TNT degradation by I. lacteus, dinitrotoluenes were also detected after the transient formation of a hydride-Meisenheimer complex, indicating that I. lacteus used two different pathways of TNT degradation simultaneously. Received: 29 March 2000 / Accepted: 23 May 2000  相似文献   

11.
Biodegradation of 2,4,6-trinitrotoluene (TNT) by the wood-rotting BasidiomycetePhanerochaete chrysosporium was studied in a fixed-film silicone membrane bioreactor and in agitated pellected cultures. The initial intermediate products of TNT biodegradation were shown to be 2-amino-4,6-dinitrotoluene (2amDNT) and 4-amino-2,6-dinitrotoluene (4amDNT). These intermediates were also degraded byP. chrysosporium. However, their rates of degradation were slow and appeared to represent rate-limiting steps in TNT degradation. The fact that 2amDNT and 4amDNT were further degraded is of importance. In most other microbial systems these compounds are typically not further degraded or are dimerized to even more persistent azo and azoxydimers. Similar to previous studies performed in stationary cultures, it was shown that substantial amounts of [14C]-TNT were degrade to [14C]-carbon dioxide in agitated pelleted cultures. Lignin peroxidase activity (assayed by veratryl alcohol oxidation) virtually disappeared upon addition of TNT to ligninolytic cultures ofP. chrysosporium. However, TNT, 2amDNT, and 4amDNT did not inhibit lignin peroxidase activity, nor were they substrates for this enzyme. Subsequent studies revealed that 4-hydroxylamino-2,6-dinitrotoluene, an intermediate in TNT reduction, was a potent lignin peroxidase inhibitor. Further studies revealed that this compound was also a substrate for lignin peroxidase H8.  相似文献   

12.
Degradation of 2,4,6-trinitrotoluene (TNT) by the white-rot fungus Bjerkandera adusta DSM 3375 was studied in relation to extracellular ligninolytic activities. The Mn(II)-dependent peroxidase, the only ligninolytic enzyme detectable, reached a maximum activity of 600 ± 159 U/l after incubation in mineral medium with a sufficient nitrogen source. In contrast, the highest extent of [14C]TNT mineralization was detected in malt extract broth, so that the ability of B. adusta to mineralize TNT did not parallel ligninolytic activity. The microsomal fraction of cells grown in the presence of TNT was found to contain 11 pmol cytochrome P-450/mg protein. In cells grown without TNT, no microsomal cytochrome P-450 could be found. Instead, 14 pmol P-450/mg protein was present in the cytosolic fraction of these cells. Cytochrome P-450 apparently affected the TNT metabolism, as shown by inhibitory studies. Addition of the cytochrome P-450 inhibitor piperonyl butoxide diminished the 14CO2 release from 21% to 0.9%, as determined after 23 days of incubation, while 1-aminobenzotriazole and metyrapone decreased the mineralization to 8.6% and 6.3% respectively. Mass-balance analysis of TNT degradation in liquid cultures revealed that, by inhibition of cytochrome P-450, the TNT-derived radioactivity associated with biomass and with polar, water-soluble metabolites decreased from 93.9% to 15.0% and the fraction of radiolabelled metabolites extractable with organic solvents fell to 92.6%. The TNT metabolites of this fraction were identified as aminodinitrotoluenes, indicating that this initial transformation product of TNT may function as a substrate for cytochrome-P-450-dependent reactions in B. adusta. Received: 27 May 1999 / Received revision: 19 August 1999 / Accepted: 19 August 1999  相似文献   

13.
Microbial degradation of explosives: biotransformation versus mineralization   总被引:22,自引:0,他引:22  
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a reactive molecule that biotransforms readily under both aerobic and anaerobic conditions to give aminodinitrotoluenes. The resulting amines biotransform to give several other products, including azo, azoxy, acetyl and phenolic derivatives, leaving the aromatic ring intact. Although some Meisenheimer complexes, initiated by hydride ion attack on the ring, can be formed during TNT biodegradation, little or no mineralization is encountered during bacterial treatment. Also, although the ligninolytic physiological phase and manganese peroxidase system of fungi can cause some TNT mineralization in liquid cultures, little to no mineralization is observed in soil. Therefore, despite more than two decades of intensive research to biodegrade TNT, no biomineralization-based technologies have been successful to date. The non-aromatic cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) lack the electronic stability enjoyed by TNT or its transformed products. Predictably, a successful enzymatic change on one of the N–NO2 or C–H bonds of the cyclic nitramine would lead to a ring cleavage because the inner C–N bonds in RDX become very weak (<2 kcal/mol). Recently this hypothesis was tested and proved feasible, when RDX produced high amounts of carbon dioxide and nitrous oxide following its treatment with either municipal anaerobic sludge or the fungus Phanaerocheate chrysosporium. Research aimed at the discovery of new microorganisms and enzymes capable of mineralizing energetic chemicals and/or enhancing irreversible binding (immobilization) of their products to soil is presently receiving considerable attention from the scientific community. Received: 14 February 2000 / Received revision: 9 June 2000 / Accepted: 13 June 2000  相似文献   

14.
In the crude ethanol extracts obtained from the rhizome and roots of Rheum palmatum L., Rheum undulatum L. and Rheum rhaponticum L. growing in Poland concentration of polyphenols ranged from 46.11 to 76.45 mg/g. Concentration of tannins ranged from 7.07% to 8.67%, while anthracene derivatives and anthraquinones varied by species - R. palmatum measured 36.3 and 34 mg/g, while R. undulatum or R. rhaponticum did not exceed 20.4 and 18.1 or 19.8 mg/g and 16.6 mg/g, respectively. Using a broth microdilution method it was found that all of the Rheum spp. extracts were more active against reference strains of Gram-positive bacteria (Staphylococcus spp.) than against those of Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis). The strongest inhibitory effect against Staphylococcus spp. was exerted by R. undulatum extract with MIC = 125–250 μg/mL. The moderate in vitro antibacterial activity of R. undulatum suggests that this plant, often used in the European cuisine to improve flavour, may be also important and useful as an alternative or auxiliary medicine remedy in the treatment of uncomplicated superficial infections caused especially by clinically important staphylococci, potentially pathogenic S. aureus or opportunistic S. epidermidis.  相似文献   

15.
报道了东北地区1个新分布种臭茶藨子(Ribes graveolens Bge.)和黑龙江省1个新分布种掌叶大黄(Rheum palmatum L.)。凭证标本保存于东北林业大学植物标本室(NEFU)。  相似文献   

16.
Investigations were carried out to evaluate the level of incorporation of radiolabeled 2,4,6-trinitrotoluene (TNT) and metabolites into the bacterial biomass of two different bacterial species after cometabolically mediated TNT transformation. Biotransformation experiments with 14C-TNT indicated that TNT was not mineralized; however, carbon derived from TNT became associated with the cells. It was found that more than 42% of the initially applied radiolabel was associated with the cell biomass after cometabolic 14C-TNT transformation with the strictly anerobic Desulfovibrio species strain SHV, whereas with the strictly aerobic Serratia plymuthica species strain B7, 32% of cell-associated 14C activity was measured. The remainder of the radiolabel was present in the supernatants of the liquid cultures in the form of different TNT metabolites. Under anoxic conditions with the Desulfovibrio species, TNT was ultimately transformed to 2,4,6-triaminotoluene (TAT) and both diaminonitrotoluene isomers, whereas under oxic conditions with the Serratia species, TNT was converted to hydroxylaminodinitrotoluenes and aminodinitrotoluenes, with 4-amino-2,6-dinitrotoluene (4ADNT) being the major end product. In both culture supernatants, small amounts of very polar, radiolabeled, but unidentified metabolites were detected. At the end of the experiments approximately 92% and 96% of the originally applied radioactivity was recovered in the studies with the Serratia and Desulfovibrio species, respectively. Received: 21 May 1998 / Accepted: 6 July 1998  相似文献   

17.
The PCB biodegradative ability of plant cells cultivated in vitro in media containing a mixture of PCB congeners, Delor 103, is demonstrated. For experiments we used submerged cultures of Armoracia rusticana, Solanum aviculare, Atropa bella-donna, transformed hairy root or embryogenic cultures of Solanum nigrum. Transformation of PCB was followed by gas chromatography after cultivations of the above-mentioned cultures with Delor 103 (10 mg 100 ml−1). The overall PCB metabolizing capability and also degradation of individual congeners greatly differed from strain to strain. The highest capability to metabolize PCB was assayed with differentiated cultures of Solanum nigrum. Beside the capability of PCB degradation, total peroxidase activity in the medium and the cell extract was also followed. Differentiated or hairy root cultures exhibiting higher degradation abilities of PCB also showed increase of peroxidase activities.  相似文献   

18.
The transformation of TNT and related aminated nitrotoluenes by Clostridium acetobutylicum was investigated. 2,4,6-trinitrotoluene (TNT) was rapidly reduced (537 nM min−1 mg protein−1) to undetermined end products via monohydroxylamino derivatives. TNT reduction was more rapid than that of 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene. The metabolic phase of clostridial cultures affected rates and extents of transformation of TNT and its intermediates. Acidogenic cultures showed rapid transformation rates and the ability to transform TNT and its primary reduction products to below detection limits; solventogenic cultures did not transform TNT completely, and showed accumulation of its hydroxylamino derivatives. Carbon monoxide-induced solventogenesis was capable of slowing the transformation of TNT and intermediates. Studies employing [ring-U-14C]-TNT demonstrated that no significant mineralization occurred and that products of transformation were water-soluble. Received 06 November 1995/ Accepted in revised form 15 August 1996  相似文献   

19.
In this study, the enhanced degradation of TNT using cultures of genome-shuffled Stenotrophomonas maltophilia OK-5 mt-3 has been examined and the proteome of shuffled strain was compared to the wild-type OK-5 strain. Genome shuffling of S. maltophilia OK-5 was used to achieve a rapid enhancement of TNT degradation. The initial mutant population was generated by NTG treatment and UV irradiation. The wild-type OK-5 strain was able to degrade 0.2 mM TNT within 6 days, yet barely tolerated 0.5 mM TNT while the shuffled OK-5 mt-3 was capable of completely degrading 0.5 mM TNT within 8 days, and 1.2 mM within 24 days. The proteomic analysis of the shuffled OK-5 mt-3 demonstrated the changes in the expression levels of certain proteins compared to wild-type OK-5. These results provide clues for understanding TNT tolerance and improved TNT degradation by shuffled S. maltophilia OK-5 mt-3 and have possible applications in the processing of industrial waste containing relatively high TNT concentrations.  相似文献   

20.
Betulinic acid (3β-hydroxy-lup-20(29)-en-28-oic acid) was obtained from in vitro cultures of Solanum aviculare in yields up to 3% of the dry weight. This is a further example of overproduction by cells cultured in vitro of a product not found in the original parent plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号