首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphopantetheine adenylyltransferase (PPAT) from Escherichia coli is an essential hexameric enzyme that catalyzes the penultimate step in coenzyme A (CoA) biosynthesis and is a target for antibacterial drug discovery. The enzyme utilizes Mg-ATP and phosphopantetheine (PhP) to generate dephospho-CoA (dPCoA) and pyrophosphate. When overexpressed in E. coli, PPAT copurifies with tightly bound CoA, suggesting a feedback inhibitory role for this cofactor. Using an enzyme-coupled assay for the forward-direction reaction (dPCoA-generating) and isothermal titration calorimetry, we investigated the steady-state kinetics and ligand binding properties of PPAT. All substrates and products bind the free enzyme, and product inhibition studies are consistent with a random bi-bi kinetic mechanism. CoA inhibits PPAT and is competitive with ATP, PhP, and dPCoA. Previously published structures of PPAT crystallized at pH 5.0 show half-the-sites reactivity for PhP and dPCoA and full occupancy by ATP and CoA. Ligand-binding studies at pH 8.0 show that ATP, PhP, dPCoA, and CoA occupy all six monomers of the PPAT hexamer, although CoA exhibits two thermodynamically distinct binding modes. These results suggest that the half-the-sites reactivity observed in PPAT crystal structures may be pH dependent. In light of previous studies on the regulation of CoA biosynthesis, the PPAT kinetic and ligand binding data suggest that intracellular PhP concentrations modulate the distribution of PPAT monomers between high- and low-affinity CoA binding modes. This model is consistent with PPAT serving as a “backup” regulator of pathway flux relative to pantothenate kinase.  相似文献   

2.
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant) to form dephospho-CoA (dPCoA) and pyrophosphate in the Coenzyme A (CoA) biosynthetic pathway. Importantly, PPATs are the potential target for developing antibiotics because bacterial and mammalian PPATs share little sequence homology. Previous structural studies revealed the mechanism of the recognizing substrates and products. The binding modes of ATP, ADP, Ppant, and dPCoA are highly similar in all known structures, whereas the binding modes of CoA or 3'-phosphoadenosine 5'-phosphosulfate binding are novel. To provide further structural information on ligand binding by PPATs, the crystal structure of PPAT from Enterococcus faecalis was solved in three forms: (i) apo form, (ii) binary complex with ATP, and (iii) binary complex with pantetheine. The substrate analog, pantetheine, binds to the active site in a similar manner to Ppant. The new structural information reported in this study including pantetheine as a potent inhibitor of PPAT will supplement the existing structural data and should be useful for structure-based antibacterial discovery against PPATs.  相似文献   

3.
Izard T  Geerlof A 《The EMBO journal》1999,18(8):2021-2030
Phosphopantetheine adenylyltransferase (PPAT) is an essential enzyme in bacteria that catalyses a rate-limiting step in coenzyme A (CoA) biosynthesis, by transferring an adenylyl group from ATP to 4'-phosphopantetheine, yielding dephospho-CoA (dPCoA). Each phosphopantetheine adenylyltransferase (PPAT) subunit displays a dinucleotide-binding fold that is structurally similar to that in class I aminoacyl-tRNA synthetases. Superposition of bound adenylyl moieties from dPCoA in PPAT and ATP in aminoacyl-tRNA synthetases suggests nucleophilic attack by the 4'-phosphopantetheine on the alpha-phosphate of ATP. The proposed catalytic mechanism implicates transition state stabilization by PPAT without involving functional groups of the enzyme in a chemical sense in the reaction. The crystal structure of the enzyme from Escherichia coli in complex with dPCoA shows that binding at one site causes a vice-like movement of active site residues lining the active site surface. The mode of enzyme product formation is highly concerted, with only one trimer of the PPAT hexamer showing evidence of dPCoA binding. The homologous active site attachment of ATP and the structural distribution of predicted sequence-binding motifs in PPAT classify the enzyme as belonging to the nucleotidyltransferase superfamily.  相似文献   

4.
Izard T 《Journal of bacteriology》2003,185(14):4074-4080
Phosphopantetheine adenylyltransferase (PPAT) regulates the key penultimate step in the essential coenzyme A (CoA) biosynthetic pathway. PPAT catalyzes the reversible transfer of an adenylyl group from Mg(2+):ATP to 4'-phosphopantetheine to form 3'-dephospho-CoA (dPCoA) and pyrophosphate. The high-resolution crystal structure of PPAT complexed with CoA has been determined. Remarkably, CoA and the product dPCoA bind to the active site in distinct ways. Although the phosphate moiety within the phosphopantetheine arm overlaps, the pantetheine arm binds to the same pocket in two distinct conformations, and the adenylyl moieties of these two ligands have distinct binding sites. Moreover, the PPAT:CoA crystal structure confirms the asymmetry of binding to the two trimers within the hexameric enzyme. Specifically, the pantetheine arm of CoA bound to one protomer within the asymmetric unit displays the dPCoA-like conformation with the adenylyl moiety disordered, whereas CoA binds the twofold-related protomer in an ordered and unique fashion.  相似文献   

5.
Phosphopantetheine adenylyltransferase (PPAT) is an essential enzyme in the coenzyme A pathway that catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant) in the presence of magnesium. To investigate the reaction mechanism, the high-resolution crystal structures of the Escherichia coli PPAT have been determined in the presence of either ATP or Ppant. Structural details of the catalytic center revealed specific roles for individual amino acid residues involved in substrate binding and catalysis. The side-chain of His18 stabilizes the expected pentacovalent intermediate, whereas the side-chains of Thr10 and Lys42 orient the nucleophile for an in-line displacement mechanism. The binding site for the manganese ion that interacts with the phosphate groups of the nucleotide has also been identified. Within the PPAT hexamer, one trimer is in its substrate-free state, whereas the other is in a substrate-bound state.  相似文献   

6.
Phosphopantetheine adenylyltransferase (PPAT) catalyses the penultimate step in coenzyme A biosynthesis in bacteria and is therefore a candidate target for antibacterial drug development. We randomly mutated the residues in the Helicobacter pylori PPAT sequence to identify those that govern protein folding and ligand binding, and we describe the crystal structure of one of these mutants (I4V/N76Y) that contains the mutations I4?→?V and N76?→?Y. Unlike other PPATs, which are homohexamers, I4V/N76Y is a domain-swapped homotetramer. The protomer structure of this mutant is an open conformation in which the 65 C-terminal residues are intertwined with those of a neighbouring protomer. Despite structural differences between wild-type PPAT and IV4/N76Y, they had similar ligand-binding properties. ATP binding to these two proteins was enthalpically driven, whereas that for Escherichia coli PPAT is entropically driven. The structural packing of the subunits may affect the thermal denaturation of wild-type PPAT and I4V/N76Y. Mutations in hinge regions often induce domain swapping, i.e. the spatial exchange of portions of adjacent protomers, but residues 4 and 76 of H. pylori PPAT are not located in or near to the hinge region. However, one or both of these residues is responsible for the large conformational change in the C-terminal region of each protomer. To identify the residue(s) responsible, we constructed the single-site mutant, N76Y, and found a large displacement of α-helix 4, which indicated that its flexibility allowed the domain swap to occur.  相似文献   

7.
Phosphopantetheine adenylyltransferase (PPAT) catalyses the penultimate step in coenzyme A biosynthesis in bacteria and is therefore a candidate target for antibacterial drug development. We randomly mutated the residues in the Helicobacter pylori PPAT sequence to identify those that govern protein folding and ligand binding, and we describe the crystal structure of one of these mutants (I4V/N76Y) that contains the mutations I4?→?V and N76?→?Y. Unlike other PPATs, which are homohexamers, I4V/N76Y is a domain-swapped homotetramer. The protomer structure of this mutant is an open conformation in which the 65 C-terminal residues are intertwined with those of a neighbouring protomer. Despite structural differences between wild-type PPAT and IV4/N76Y, they had similar ligand-binding properties. ATP binding to these two proteins was enthalpically driven, whereas that for Escherichia coli PPAT is entropically driven. The structural packing of the subunits may affect the thermal denaturation of wild-type PPAT and I4V/N76Y. Mutations in hinge regions often induce domain swapping, i.e. the spatial exchange of portions of adjacent protomers, but residues 4 and 76 of H. pylori PPAT are not located in or near to the hinge region. However, one or both of these residues is responsible for the large conformational change in the C-terminal region of each protomer. To identify the residue(s) responsible, we constructed the single-site mutant, N76Y, and found a large displacement of α-helix 4, which indicated that its flexibility allowed the domain swap to occur.  相似文献   

8.
Pyridoxamine-pyruvate aminotransferase (PPAT; EC 2.6.1.30) is a pyridoxal 5'-phosphate-independent aminotransferase and catalyzes reversible transamination between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The crystal structure of PPAT from Mesorhizobium loti has been solved in space group P4(3)2(1)2 and was refined to an R factor of 15.6% (R(free) = 20.6%) at 2.0 A resolution. In addition, the structures of PPAT in complexes with pyridoxamine, pyridoxal, and pyridoxyl-L-alanine have been refined to R factors of 15.6, 15.4, and 14.5% (R(free) = 18.6, 18.1, and 18.4%) at 1.7, 1.7, and 2.0 A resolution, respectively. PPAT is a homotetramer and each subunit is composed of a large N-terminal domain, consisting of seven beta-sheets and eight alpha-helices, and a smaller C-terminal domain, consisting of three beta-sheets and four alpha-helices. The substrate pyridoxal is bound through an aldimine linkage to Lys-197 in the active site. The alpha-carboxylate group of the substrate amino/keto acid is hydrogen-bonded to Arg-336 and Arg-345. The structures revealed that the bulky side chain of Glu-68 interfered with the binding of the phosphate moiety of pyridoxal 5'-phosphate and made PPAT specific to pyridoxal. The reaction mechanism of the enzyme is discussed based on the structures and kinetics results.  相似文献   

9.
Formation of a complex between Apo2L (also called TRAIL) and its signaling receptors, DR4 and DR5, triggers apoptosis by inducing the oligomerization of intracellular death domains. We report the crystal structure of the complex between Apo2L and the ectodomain of DR5. The structure shows three elongated receptors snuggled into long crevices between pairs of monomers of the homotrimeric ligand. The interface is divided into two distinct patches, one near the bottom of the complex close to the receptor cell surface and one near the top. Both patches contain residues that are critical for high-affinity binding. A comparison to the structure of the lymphotoxin-receptor complex suggests general principles of binding and specificity for ligand recognition in the TNF receptor superfamily.  相似文献   

10.
High-resolution structures of the ligand binding core of GluR0, a glutamate receptor ion channel from Synechocystis PCC 6803, have been solved by X-ray diffraction. The GluR0 structures reveal homology with bacterial periplasmic binding proteins and the rat GluR2 AMPA subtype neurotransmitter receptor. The ligand binding site is formed by a cleft between two globular alpha/beta domains. L-Glutamate binds in an extended conformation, similar to that observed for glutamine binding protein (GlnBP). However, the L-glutamate gamma-carboxyl group interacts exclusively with Asn51 in domain 1, different from the interactions of ligand with domain 2 residues observed for GluR2 and GlnBP. To address how neutral amino acids activate GluR0 gating we solved the structure of the binding site complex with L-serine. This revealed solvent molecules acting as surrogate ligand atoms, such that the serine OH group makes solvent-mediated hydrogen bonds with Asn51. The structure of a ligand-free, closed-cleft conformation revealed an extensive hydrogen bond network mediated by solvent molecules. Equilibrium centrifugation analysis revealed dimerization of the GluR0 ligand binding core with a dissociation constant of 0.8 microM. In the crystal, a symmetrical dimer involving residues in domain 1 occurs along a crystallographic 2-fold axis and suggests that tetrameric glutamate receptor ion channels are assembled from dimers of dimers. We propose that ligand-induced conformational changes cause the ion channel to open as a result of an increase in domain 2 separation relative to the dimer interface.  相似文献   

11.
Helicobacter pylori is a bacterium that causes chronic active gastritis and peptic ulcers. Drugs targeting H. pylori phosphopantetheine adenylyltransferase (HpPPAT), which is involved in CoA biosynthesis, may be useful. Herein, we report the expression in Escherichia coli and purification of recombinant HpPPAT and describe a crystal structure for an HpPPAT/CoA complex. As is the case for E. coli PPAT (EcPPAT), HpPPAT is hexameric in solution and as a crystal. Each protomer has a well-packed dinucleotide-binding fold in which CoA binds. Structural characterisation demonstrated that CoA derived from the E. coli expression system bound tightly to HpPPAT, presumably to initiate feedback inhibition. However, the interactions between the active-site residues of HpPPAT and CoA are not identical to those of other PPATs. Finally, CoA binding affects HpPPAT thermal denaturation.  相似文献   

12.
The Anopheles gambiae mosquito is the main vector of malaria transmission in sub-Saharan Africa. We present here a 1.5A crystal structure of AgamOBP1, an odorant binding protein (OBP) from the A. gambiae mosquito. The protein crystallized as a dimer with a unique binding pocket consisting of a continuous tunnel running through both subunits of the dimer and occupied by a PEG molecule. We demonstrate that AgamOBP1 undergoes a pH dependent conformational change that is associated with reduced ligand binding. A predominance of acid-labile hydrogen bonds involving the C-terminal loop suggests a mechanism in which a drop in pH causes C-terminal loop to open, leaving the binding tunnel solvent exposed, thereby lowering binding affinity for ligand. Because proteins from two distantly related insects also undergo a pH dependent conformational change involving the C-terminus that is associated with reduced ligand affinity, our results suggest a common mechanism for OBP activity.  相似文献   

13.
Phosphopantetheine adenylyltransferase (PPAT, EC. 2.7.7.3) catalyzes an essential step in the reaction that transfers an adenylyl group from adenosine tri phosphate (ATP) to 4′-phosphopantetheine (pPant) yielding 3′- dephospho-coenzyme A (dPCoA) and pyrophosphate (PP) in the coenzyme A (CoA) biosynthesis pathway. The enzyme PPAT from Acinetobacter baumannii (AbPPAT) was cloned, expressed and purified. The binding studies of AbPPAT were carried out with two compounds, tri‑sodium citrate (TSC) and l-ascorbic acid (LAA, vitamin-C) using fluorescence spectroscopic (FS) and surface Plasmon resonance (SPR) methods. Both methods provided similar values of dissociation constants for TSC and LAA which were of the order of 10−8 M and 10−5 M respectively. The computer aided docking studies indicated fewer interactions of LAA with AbPPAT as compared to those of TSC. The freshly purified samples of AbPPAT were crystallized. The crystals of AbPPAT were soaked in the solutions containing TSC and LAA. However, the crystals of the complex of AbPPAT with LAA did not diffract well and hence the structure of the complex of AbPPAT with LAA could not be determined. On the other hand, the crystals of the complex of AbPPAT with TSC diffracted well and the structure was determined at 1.76 Å resolution. It showed that TSC bound to AbPPAT at the ATP binding site and formed several intermolecular contacts including 12 hydrogen bonds. The results of binding studies for both TSC and LAA and the structure of the complex of AbPPAT with TSC clearly indicated a potential role of TSC and LAA as antibacterial agents.  相似文献   

14.
Ye S  Li Y  Chen L  Jiang Y 《Cell》2006,126(6):1161-1173
MthK is a prokaryotic Ca(2+)-gated K(+) channel that, like other ligand-gated channels, converts the chemical energy of ligand binding to the mechanical force of channel opening. The channel's eight ligand-binding domains, the RCK domains, form an octameric gating ring in which Ca(2+) binding induces conformational changes that open the channel. Here we present the crystal structures of the MthK gating ring in closed and partially open states at 2.8 A, both obtained from the same crystal grown in the absence of Ca(2+). Furthermore, our biochemical and electrophysiological analyses demonstrate that MthK is regulated by both Ca(2+) and pH. Ca(2+) regulates the channel by changing the equilibrium of the gating ring between closed and open states, while pH regulates channel gating by affecting gating-ring stability. Our findings, along with the previously determined open MthK structure, allow us to elucidate the ligand gating mechanism of RCK-regulated K(+) channels.  相似文献   

15.
To better understand the mechanism of ligand binding and ligand-induced conformational change, the crystal structure of apoenzyme catalytic (C) subunit of adenosine-3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) was solved. The apoenzyme structure (Apo) provides a snapshot of the enzyme in the first step of the catalytic cycle, and in this unliganded form the PKA C subunit adopts an open conformation. A hydrophobic junction is formed by residues from the small and large lobes that come into close contact. This "greasy" patch may lubricate the shearing motion associated with domain rotation, and the opening and closing of the active-site cleft. Although Apo appears to be quite dynamic, many important residues for MgATP binding and phosphoryl transfer in the active site are preformed. Residues around the adenine ring of ATP and residues involved in phosphoryl transfer from the large lobe are mostly preformed, whereas residues involved in ribose binding and in the Gly-rich loop are not. Prior to ligand binding, Lys72 and the C-terminal tail, two important ATP-binding elements are also disordered. The surface created in the active site is contoured to bind ATP, but not GTP, and appears to be held in place by a stable hydrophobic core, which includes helices C, E, and F, and beta strand 6. This core seems to provide a network for communicating from the active site, where nucleotide binds, to the peripheral peptide-binding F-to-G helix loop, exemplified by Phe239. Two potential lines of communication are the D helix and the F helix. The conserved Trp222-Phe238 network, which lies adjacent to the F-to-G helix loop, suggests that this network would exist in other protein kinases and may be a conserved means of communicating ATP binding from the active site to the distal peptide-binding ledge.  相似文献   

16.
The NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans (abbreviated Sm-ALDH) belongs to the aldehyde dehydrogenase (ALDH) family. Its catalytic mechanism proceeds via two steps, acylation and deacylation. Its high catalytic efficiency at neutral pH implies prerequisites relative to the chemical mechanism. First, the catalytic Cys284 should be accessible and in a thiolate form at physiological pH to attack efficiently the aldehydic group of the glyceraldehyde-3-phosphate (G3P). Second, the hydride transfer from the hemithioacetal intermediate toward the nicotinamide ring of NADP should be efficient. Third, the nucleophilic character of the water molecule involved in the deacylation should be strongly increased. Moreover, the different complexes formed during the catalytic process should be stabilised.The crystal structures presented here (an apoenzyme named Apo2 with two sulphate ions bound to the catalytic site, the C284S mutant holoenzyme and the ternary complex composed of the C284S holoenzyme and G3P) together with biochemical results and previously published apo and holo crystal structures (named Apo1 and Holo1, respectively) contribute to the understanding of the ALDH catalytic mechanism.Comparison of Apo1 and Holo1 crystal structures shows a Cys284 side-chain rotation of 110 degrees, upon cofactor binding, which is probably responsible for its pK(a) decrease. In the Apo2 structure, an oxygen atom of a sulphate anion interacts by hydrogen bonds with the NH2 group of a conserved asparagine residue (Asn154 in Sm-ALDH) and the Cys284 NH group. In the ternary complex, the oxygen atom of the aldehydic carbonyl group of the substrate interacts with the Ser284 NH group and the Asn154 NH2 group. A substrate isotope effect on acylation is observed for both the wild-type and the N154A and N154T mutants. The rate of the acylation step strongly decreases for the mutants and becomes limiting. All these results suggest the involvement of Asn154 in an oxyanion hole in order to stabilise the tetrahedral intermediate and likely the other intermediates of the reaction. In the ternary complex, the cofactor conformation is shifted in comparison with its conformation in the C284S holoenzyme structure, likely resulting from its peculiar binding mode to the Rossmann fold (i.e. non-perpendicular to the plane of the beta-sheet). This change is likely favoured by a characteristic loop of the Rossmann fold, longer in ALDHs than in other dehydrogenases, whose orientation could be constrained by a conserved proline residue. In the ternary and C284S holenzyme structures, as well as in the Apo2 structure, the Glu250 side-chain is situated less than 4 A from Cys284 or Ser284 instead of 7 A in the crystal structure of the wild-type holoenzyme. It is now positioned in a hydrophobic environment. This supports the pK(a) assignment of 7.6 to Glu250 as recently proposed from enzymatic studies.  相似文献   

17.
Nickel superoxide dismutase structure and mechanism   总被引:2,自引:0,他引:2  
The 1.30 A resolution crystal structure of nickel superoxide dismutase (NiSOD) identifies a novel SOD fold, assembly, and Ni active site. NiSOD is a hexameric assembly of right-handed 4-helix bundles of up-down-up-down topology with N-terminal hooks chelating the active site Ni ions. This newly identified nine-residue Ni-hook structural motif (His-Cys-X-X-Pro-Cys-Gly-X-Tyr) provides almost all interactions critical for metal binding and catalysis, and thus will likely be diagnostic of NiSODs. Conserved lysine residues are positioned for electrostatic guidance of the superoxide anion to the narrow active site channel. Apo structures show that the Ni-hook motif is unfolded prior to metal binding. The active site Ni geometry cycles from square planar Ni(II), with thiolate (Cys2 and Cys6) and backbone nitrogen (His1 and Cys2) ligands, to square pyramidal Ni(III) with an added axial His1 side chain ligand, consistent with electron paramagentic resonance spectroscopy. Analyses of the three NiSOD structures and comparisons to the Cu,Zn and Mn/Fe SODs support specific molecular mechanisms for NiSOD maturation and catalysis, and identify important structure-function relationships conserved among SODs.  相似文献   

18.
Plant HXXXD acyltransferase-catalyzed malonylation is an important modification reaction in elaborating the structural diversity of flavonoids and anthocyanins, and a universal adaptive mechanism to detoxify xenobiotics. Nicotiana tabacum malonyltransferase 1 (NtMaT1) is a member of anthocyanin acyltransferase subfamily that uses malonyl-CoA (MLC) as donor catalyzing transacylation in a range of flavonoid and naphthol glucosides. To gain insights into the molecular basis underlying its catalytic mechanism and versatile substrate specificity, we resolved the X-ray crystal structure of NtMaT1 to 3.1?? resolution. The structure comprises two α/β mixed subdomains, as typically found in the HXXXD acyltransferases. The partial electron density map of malonyl-CoA allowed us to reliably dock the entire molecule into the solvent channel and subsequently define the binding sites for both donor and acceptor substrates. MLC bound to the NtMaT1 occupies one end of the long solvent channel between two subdomains. On superimposing and comparing the structure of NtMaT1 with that of an enzyme from anthocyanin acyltransferase subfamily from red chrysanthemum (Dm3Mat3) revealed large architectural variation in the binding sites, both for the acyl donor and for the acceptor, although their overall protein folds are structurally conserved. Consequently, the shape and the interactions of malonyl-CoA with the binding sites' amino acid residues differ substantially. These major local architectural disparities point to the independent, divergent evolution of plant HXXXD acyltransferases in different species. The structural flexibility of the enzyme and the amendable binding pattern of the substrates provide a basis for the evolution of the distinct, versatile substrate specificity of plant HXXXD acyltransferases.  相似文献   

19.
Riboswitches are structural cis-acting genetic regulatory elements in 5′ UTRs of mRNAs, consisting of an aptamer domain that regulates the behavior of an expression platform in response to its recognition of, and binding to, specific ligands. While our understanding of the ligand-bound structure of the aptamer domain of the adenine riboswitches is based on crystal structure data and is well characterized, understanding of the structure and dynamics of the ligand-free aptamer is limited to indirect inferences from physicochemical probing experiments. Here we report the results of 15-nsec-long explicit-solvent molecular dynamics simulations of the add A-riboswitch crystal structure (1Y26), both in the adenine-bound (CLOSED) state and in the adenine-free (OPEN) state. Root-mean-square deviation, root-mean-square fluctuation, dynamic cross-correlation, and backbone torsion angle analyses are carried out on the two trajectories. These, along with solvent accessible surface area analysis of the two average structures, are benchmarked against available experimental data and are shown to constitute the basis for obtaining reliable insights into the molecular level details of the binding and switching mechanism. Our analysis reveals the interaction network responsible for, and conformational changes associated with, the communication between the binding pocket and the expression platform. It further highlights the significance of a, hitherto unreported, noncanonical W:H trans base pairing between A73 and A24, in the OPEN state, and also helps us to propose a possibly crucial role of U51 in the context of ligand binding and ligand discrimination.  相似文献   

20.
The kringle modules of apolipoprotein(a) [apo(a)] of lipoprotein(a) [Lp(a)] are highly homologous with kringle 4 of plasminogen (75-94%) and like the latter are autonomous structural and functional units. Apo(a) contains 14-37 kringle 4 (KIV) repeats distributed into 10 classes (1-10). Lp(a) binds lysine-Sepharose via a lysine binding site (LBS) located in KIV-10 (88% homology with plasminogen K4). However, the W72R substitution that occurs in rhesus monkeys and occasionally in humans leads to impaired lysine binding capacity of KIV-10 and Lp(a). The foregoing has been investigated by determining the structures of KIV-10/M66 (M66 variant) in its unliganded and ligand [epsilon-aminocaproic acid (EACA)] bound modes and the structure of recombinant KIV-10/M66R72 (the W72R mutant). In addition, the EACA liganded structure of a sequence polymorph (M66T in about 42-50% of the human population) was reexamined (KIV-10/T66/EACA). The KIV-10/M66, KIV-10/M66/EACA, and KIV-10/T66/EACA molecular structures are highly isostructural, indicating that the LBS of the kringles is preformed anticipating ligand binding. A displacement of three water molecules from the EACA binding groove and a movement of R35 bringing the guanidinium group close to the carboxylate of EACA to assist R71 in stabilizing the anionic group of the ligand are the only changes accompanying ligand binding. Both EACA structures were in the embedded binding mode utilizing all three binding centers (anionic, hydrophobic, cationic) like plasminogen kringles 1 and 4. The KIV-10/T66/EACA structure determined in this work differs from one previously reported [Mikol, V., Lo Grasso, P. V. and, Boettcher, B. R. (1996) J. Mol. Biol. 256, 751-761], which crystallized in a different crystal system and displayed an unbound binding mode, where only the amino group of EACA interacted with the anionic center of the LBS. The remainder of the ligand extended into solvent perpendicular to the kringle surface, leaving the hydrophobic pocket and the cationic center of the LBS unoccupied. The structure of recombinant KIV-10/M66R72 shows that R72 extends along the ligand binding groove parallel to the expected position of EACA toward the anionic center (D55/D57) and makes a salt bridge with D57. Thus, the R72 side chain mimics ligand binding, and loss of binding ability is the result of steric blockage of the LBS by R72 physically occupying part of the site. The rhesus monkey lysine binding impairment is compared with that of chimpanzee where KIV-10 has been shown to have a D57N mutation instead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号