首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The RII-B isoform of the regulatory subunit (R) of cAMP-dependent protein kinase II is abundantly and selectively expressed in cerebral cortex (Erlichman, J., Sarkar, D., Fleischer, N., and Rubin, C. S. (1980) J. Biol. Chem. 255, 8179-8184). In contrast to the cytosolic RII-H isoform from heart and other non-neural tissues, a substantial fraction of cerebral cortex RII-B is tightly associated with cell organelles. In order to study the cellular basis for the localization and abundance of RII-B in this complex and heterogeneous tissue, rat cerebral cortex was fractionated into highly purified populations of neurons, astrocytes, and oligodendrocytes. In neurons and astrocytes more than 80% of the total cAMP-binding activity is contributed by RII subunits, whereas the myelin-producing oligodendrocytes contain nearly equal proportions of RI (from protein kinase I) and RII. Approximately 70% of RII and RI subunits are associated with the particulate fraction in each of the three types of brain cells. The nature of the RII isoforms expressed in the cytosolic and particulate fractions of the purified brain cells was established by performing Western immunoblot and indirect immunoprecipitation analyses with selective and sensitive polyclonal antibodies directed against RII-B. Astrocytes and neurons exhibit high levels of RII-B, whereas oligodendrocytes contain the RII-H isoform. Thus, the expression of RII isoforms is not uniform among brain cells that are anatomically and developmentally related. Rather, it appears that RII-B and RII-H are expressed in a cell-specific fashion within cerebral cortex and this might reflect an RII-mediated adaptation of protein kinase II to the specialized metabolic and functional roles of neurons, astrocytes, and oligodendrocytes.  相似文献   

2.
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.  相似文献   

3.
cDNA clones coding for the regulatory subunit (RII beta) of type II cAMP-dependent protein kinase were isolated from a bovine brain cDNA expression library in lambda gt11. The cDNA codes for a protein of 418 amino acids which is 98% homologous to the rat and human RII beta proteins. A series of expression vectors coding for truncated RII beta proteins were constructed in pATH plasmids and fusion proteins were expressed in Escherichia coli. Polyclonal and monoclonal antibodies made against purified bovine brain RII were immunoreactive with the fusion proteins on Western blots. The expressed RII beta-fusion proteins were used in overlay assays to identify the region in RII beta which binds to microtubule-associated protein 2 (MAP2) and to the 75,000-dalton calmodulin-binding protein (P75) (Sarkar, D., Erlichman, J., and Rubin, C.S. (1984) J. Biol. Chem. 259, 9844-9846) in bovine brain. Fusion protein containing amino acids 1-50 of the RII beta NH2 terminus (RII beta(1-50)] bound to both MAP2 and P75 immobilized on nitrocellulose filters. A pATH11-directed fusion protein containing the 31 amino acid RII-binding site of the human MAP2 protein (MAP2(31)) (Rubino, H.M., Dammerman, M., Shafit-Zagardo, B., and Erlichman, J. (1989) Neuron 3, 631-638) also bound RII beta-fusion proteins containing RII beta amino acids 1-50. Three fusion proteins, RII beta(1-25), RII beta(25-96), and RII beta(1-265,25-96 deleted) did not bind to MAP2(31) nor P75. The results showed that the binding domain for MAP2 and P75 was located within the NH2-terminal 50 amino acids of RII beta. Preincubation of bovine heart protein kinase II alpha and RII beta(1-50) with MAP2(31) prevented their binding to both P75 and MAP2(31) that were immobilized on nitrocellulose, suggesting that the binding sites for MAP2 and P75 are located near each other or that the same site on RII was binding to both proteins.  相似文献   

4.
Cyclic AMP-dependent protein kinase II-B appears to be adapted for function in the mammalian central nervous system via the properties of its regulatory subunit (RII-B). RII-B is selectively expressed in the central nervous system, tightly associated with cerebral cortex membranes, and avidly complexed by the bovine brain calmodulin-binding protein designated P75 (Sarkar, D., Erlichman, J., and Rubin, C. S. (1984) J. Biol. Chem. 259, 9840-9846). Complexes of RII-B and P75 polypeptides can be purified to near homogeneity from either membrane or cytosolic fractions of brain homogenates, suggesting that the binding protein plays a role in determining the central nervous system-specific properties of protein kinase II-B. To investigate the properties of a prototypic, nonabundant, RII-B-binding protein, we have cloned and characterized cDNAs for rat brain P150, a homolog of bovine brain P75. cDNAs were retrieved from a lambda gt11 expression library using 32P-labeled RII-B as a functional probe. cDNA inserts (800 and 1100 base pairs) subcloned into expression plasmids directed the production of partial P150 polypeptides in Escherichia coli that bind RII-B. Sequence analyses disclosed that P150 is a previously uncharacterized protein that contains multiple octapeptide repeats as well as unique sequences. Antibodies directed against 15-residue peptides corresponding to either repeated or unique sequences bound the polypeptides expressed in E. coli and a 150-kDa protein in rat brain membranes and cytosol. Moreover, the immunoprecipitated 150-kDa protein exhibited high affinity RII-B-binding activity. Finally, 3' deletion analysis demonstrated that a 15-amino acid segment of P150 is essential for binding with RII-B.  相似文献   

5.
The type II cAMP-dependent protein kinase (PKA) is localized to specific subcellular environments through binding of the dimeric regulatory subunit (RII) to anchoring proteins. Subcellular localization is likely to influence which substrates are most accessible to the catalytic subunit upon activation. We have previously shown that the RII-binding domains of four anchoring proteins contain sequences which exhibit a high probability of amphipathic helix formation (Carr, D. W., Stofko-Hahn, R. E., Fraser, I. D. C., Bishop, S. M., Acott, T. E., Brennan, R. G., and Scott J. D. (1991) J. Biol. Chem. 266, 14188-14192). In the present study we describe the cloning of a cDNA which encodes a 1015-amino acid segment of Ht 31. A synthetic peptide (Asp-Leu-Ile-Glu-Glu-Ala-Ala-Ser-Arg-Ile-Val-Asp-Ala-Val-Ile-Glu-Gln-Val -Lys-Ala-Ala-Tyr) representing residues 493-515 encompasses the minimum region of Ht 31 required for RII binding and blocks anchoring protein interaction with RII as detected by band-shift analysis. Structural analysis by circular dichroism suggests that this peptide can adopt an alpha-helical conformation. Both Ht 31 (493-515) peptide and its parent protein bind RII alpha or the type II PKA holoenzyme with high affinity. Equilibrium dialysis was used to calculate dissociation constants of 4.0 and 3.8 nM for Ht 31 peptide interaction with RII alpha and the type II PKA, respectively. A survey of nine different bovine tissues was conducted to identify RII binding proteins. Several bands were detected in each tissues using a 32P-RII overlay method. Addition of 0.4 microM Ht 31 (493-515) peptide to the reaction mixture blocked all RII binding. These data suggest that all anchoring proteins bind RII alpha at the same site as the Ht 31 peptide. The nanomolar affinity constant and the different patterns of RII-anchoring proteins in each tissue suggest that the type II alpha PKA holoenzyme may be specifically targeted to different locations in each type of cell.  相似文献   

6.
Downstream regulation of the cAMP-dependent protein kinase (PKA) pathway is mediated by anchoring proteins (AKAPs) that sequester PKA to specific subcellular locations through binding to PKA regulatory subunits (RI or RII). The RII-binding domain of all AKAPs forms an amphipathic alpha-helix with similar secondary structure. However, the importance of sequence differences in the RII-binding domains of different AKAPs is unknown, and mechanisms that regulate AKAP-PKA affinity are not clearly defined. Using surface plasmon resonance (SPR) spectroscopy, we measured real-time kinetics of RII interaction with various AKAPs. Base-line equilibrium binding constants (K(d)) for RII binding to Ht31, mAKAP, and AKAP15/18 were 10 nm, 119 nm, and 6.6 microm, respectively. PKA stimulation of intact Chinese hamster ovary cells increased RIIalpha binding to AKAP100/mAKAP and AKAP15/18 by approximately 7- and 82-fold, respectively. These results suggest that differences in primary sequence of the RII-binding domain may be responsible for the selective affinity of RII for different AKAPs. Furthermore, RII autophosphorylation may provide additional localized regulation of kinase anchoring. In cardiac myocytes, disruption of RII-AKAP interaction decreased PKA phosphorylation of the PKA substrate, myosin-binding protein C. Thus, these mechanisms may be involved in adding additional specificity in intracellular signaling in diverse cell types and under conditions of cAMP/PKA activation.  相似文献   

7.
Microtubule-associated protein 2 (MAP2) binds, and is a substrate for, type II cAMP-dependent protein kinase. The structural domain in MAP2 that binds the regulatory subunit (RII) of protein kinase II was identified by expressing fragments of a human MAP2 cDNA in E. coli using the pATH11 vector. Fusion proteins were resolved by SDS-PAGE and transferred to nitrocellulose. The filters were probed with purified bovine heart or brain RII, anti-RII monoclonal antibodies, and 125I-labeled protein A. Binding of RII was localized to a 31 amino acid sequence near the N-terminus of the MAP2 molecule. Fusion proteins containing this fragment bound both heart and brain RIIs in a concentration-dependent manner, but bound heart RII with a higher apparent affinity than brain RII. The amino acid sequence of this fragment (DRETAEEVSARIVQVVTAEAVAVLKGEQEKE) is totally conserved between human and mouse MAP2, suggesting an important role for the RII binding site of MAP2 in neuronal function.  相似文献   

8.
The regulatory subunit (RII-B) of bovine brain protein kinase II and the well-characterized regulatory subunit of heart protein kinase II (RII-H) exhibit similar physicochemical properties, but differ significantly in their peptide maps and antigenic determinants. As a starting point for studying structure/function relationships in RII-B and investigating the extent of homology and diversity between RII-B and RII-H, a peptide containing the autophosphorylation site of RII-B has been characterized. The phosphopeptide was rapidly (36 h) purified to homogeneity (yield = 40%) from a tryptic digest of RII-B using three consecutive reverse-phase high performance liquid chromatography steps. A combination of gas-phase microsequencing and solid-phase Edman degradation was used to determine the sequence and to identify the phosphorylated site: Arg-Ala-Ser(P)-Val-Cys-Ala-Glu-Ala-Tyr-Asn-Pro-Asp-Glu-Glu-Glu-Asp-Asp-A la-Glu. RII-B contains a classical phosphorylation site for the catalytic subunit, and the phosphopeptide sequence is homologous to the sequence surrounding the phosphorylation site of RII-H. Fourteen amino acids are identical in the two sequences, and the high net negative charge on the peptide is conserved. However, the peptide from RII-B is alanine-rich and more hydrophobic. Furthermore, five differences between the two functionally related sequences provide direct evidence for the idea that RII-B and RII-H are the products of related but distinct genes.  相似文献   

9.
Immunocytochemical evidence of an association between the regulatory subunit RII of the cAMP-dependent protein kinase (cAMP-PK) and the Golgi apparatus in several cell types has been reported. In order to identify endogenous Golgi proteins binding RII, a fraction enriched in Golgi vesicles was isolated from human lymphoblasts. Only the RII beta isoform was detected in the Golgi-rich fraction, although RII alpha has also been found to be present in these cells. A 85 kDa RII-binding protein was identified in Golgi vesicles using a [32P]RII overlay of Western blots. The existence of an endogenous RII beta-p85 complex in isolated Golgi vesicles was demonstrated by two independent means: (i) co-immunoprecipitation of both proteins under non-denaturing conditions with an antibody against RII beta and (ii) co-purification of RII beta-p85 complexes on a cAMP-analogue affinity column. p85 was phosphorylated by both endogenous and purified catalytic subunits of cAMP-pKII. Extraction experiments and protease protection experiments indicated that p85 is an integral membrane protein although it partitioned atypically during Triton X-114 phase separation. We propose that p85 anchors RII beta to the Golgi apparatus of human lymphoblasts and thereby defines the Golgi substrate targets most accessible to phosphorylation by C subunit. This mechanism may be relevant to the regulation of processes involving the Golgi apparatus itself, such as membrane traffic and secretion, but also relevant to nearby nuclear events dependent on C subunit.  相似文献   

10.
Lead-binding properties of intestinal calcium-binding proteins   总被引:5,自引:0,他引:5  
The bovine and chick vitamin D-induced intestinal calcium-binding proteins (CaBP) bind lead. Bovine CaBP binds 2 atoms of lead/molecule, and chick CaBP binds 4 atoms of lead per molecule and these values are identical to those for calcium binding. 45Calcium-displacement studies indicate significantly higher affinities for lead than for calcium for both proteins. All evidence indicates that lead is bound to the 4 high affinity calcium-binding sites on chick CaBP and to the corresponding 2 high affinity sites on bovine CaBP, and that binding of lead to sulfhydryl groups is, relatively, not significant. Calmodulin, troponin C, and oncomodulin also bind lead with high affinities and in preference to calcium, indicating that lead binding is a general property of proteins belonging to the troponin C superfamily of calcium-binding proteins.  相似文献   

11.
In mammalian brain, physiological signals carried by cAMP seem to be targeted to intraneuronal sites by the association of cAMP-dependent protein kinase II beta with anchoring proteins that bind the regulatory subunit (RII beta) of the enzyme. Previously, an RII beta-binding domain was characterized in a large (Mr approximately 150,000) candidate anchor protein, rat brain P150 (Bregman, D. B., Bhattacharyya, N., and Rubin, C. S. (1989) J. Biol. Chem. 264, 4648-4656). RII beta-binding proteins with Mr values of 65,000-80,000 were detected in the brains of other species. Since little was known about the structural features of these lower Mr proteins, we undertook the characterization of bovine brain P75 as a prototype. A cDNA encoding 258 amino acid residues at the C terminus of P75 was cloned by probing a lambda gt11 expression library with 32P-RII beta. The cDNA insert was ligated into the pET-3b expression plasmid, and large amounts of the partial P75 polypeptide (designated P47) were produced in Escherichia coli. A purification scheme that yielded 9 mg of soluble P47 from a 1-liter bacterial culture was devised. Antibodies directed against the P47 polypeptide revealed that P75 is expressed almost exclusively in brain. The sequence of 117 amino acid residues at the C terminus of P75 contains the RII beta-binding site and is 80% identical to the corresponding region of P150. In contrast, a lower level of identity (36%) between P75 and P150 at a more N-terminal region indicates that the two RII beta-binding proteins are related, but distinct proteins. P75 is not homologous to microtubule-associated protein 2, an RII alpha-selective binding protein, or any other previously studied proteins. C-terminal truncation analysis disclosed that the final 26 residues in P75 are essential for binding RII beta.  相似文献   

12.
Postsynaptic densities (PSD) are a network of proteins located on the internal surface of excitatory synapses just inside the postsynaptic membrane. Enzymes associated with the PSD are optimally positioned to respond to signals transduced across the postsynaptic membrane resulting from excitatory synaptic transmission or neurotransmitter release. We present evidence suggesting that type II cAMP-dependent protein kinase (PKA) is anchored to the PSD through interaction of its regulatory subunit (RII) with an A-Kinase Anchor Protein (AKAPs). A cDNA for the human RII-anchoring protein, AKAP 79, was isolated by screening an expression library with radiolabeled RII. This cDNA (2621 base pairs) encodes a protein of 427 amino acids with 76% identity to bovine brain AKAP 75 and 93% identity to a carboxyl-terminal RII-binding fragment of murine brain AKAP 150. A bacterially expressed 92-amino acid fragment, AKAP 79 (335-427) was able to bind RII alpha. Disruption of secondary structure by site-directed mutagenesis at selected residues within a putative acidic amphipathic helix located between residues 392 and 408 prevented RII binding. Immunological studies demonstrate that AKAP 79 is predominantly expressed in the cerebral cortex and is a component of fractions enriched for postsynaptic densities. AKAP antisera strongly cross-react with a 150-kDa protein in murine PSD believed to be AKAP 150. Co-localization of the type II PKA in purified PSD fractions was confirmed immunologically by detection of RII and enzymologically by measuring cAMP-stimulated phosphorylation of the heptapeptide substrate Kemptide. Approximately 30% of the PSD kinase activity was specifically inhibited by PKI 5-24 peptide, a highly specific inhibitor of PKA. We propose that AKAP 79 and AKAP 150 function to anchor the type II PKA to the PSD, presumably for a role in the regulation of postsynaptic events.  相似文献   

13.
The affinities of anti-human liver arginase antibodies raised in rabbits to liver arginases from man, bovine, pig, dog, guinea pig, rat and mouse were investigated by Scatchard analysis of the binding of the arginases from crude liver extracts to Sepharose-bound immunoglobulins. All arginases bound with good affinity, but the binding capacities of the immunosorbent for the enzymes from various species decreased with decreasing phylogenetic relationship of the species. Arginase from murine peritoneal macrophages did not bind to the immunosorbent at all. A simple two-step purification method for the liver arginases of all species mentioned above is given. All arginases were purified to electrophoretical homogeneity. The molecular weights of their subunits were estimated.  相似文献   

14.
Monoclonal antibodies to proteins important in phototransduction in the frog rod outer segment have been obtained. These include 6 different antibodies to rhodopsin, 50 to a guanine nucleotide binding protein (G-protein; 40,000 daltons), and 2 to cytoplasmic proteins. The antigens used were Percoll-purified rod outer segments, a rod outer segment soluble protein fraction, or a soluble plus peripheral membrane protein fraction. Antibodies were assayed by solid phase assay using a fluorogenic detection system. Proteins to which antibodies bound were assayed on Western blots, and the sensitivities of three different detection systems were compared. Most antibodies bound to only one rod outer segment protein band on Western blots. Immunofluorescence microscopy demonstrated binding of both anti-rhodopsin and anti-G-protein to isolated frog rod outer segments. Antibodies were purified from either culture supernatants or ascites fluid on protein A affinity columns. Two purified anti-G-protein antibodies have binding affinities to 125I-labeled G-protein of less than 10(-6) M-1. Of 11 antibodies to frog or bovine G-protein tested in solid phase and Western blot assays, all bind to the alpha rather than the beta or gamma subunits. Procedures developed here are being used in preparing other antibodies that affect reactions in the phototransduction pathway.  相似文献   

15.
In the human lymphoblastic cell line KE 37, Northern blot analysis with cDNA probes for human regulatory subunits RIIα and RIIβ of the cAMP-dependent protein kinase (A-kinase) type II and immunoblotting or immunoprecipitation studies with several antibodies directed against RIIα and RIIβ show that these two isoforms are expressed. The major isoform α is mostly cytosolic, whereas the β isoform appears concentrated in the Golgi-centrosomal area, as judged by immunofluorescence and cell fractionation. Using a 32P-labeled RII overlay on Western blots, a 350-kDa RII-binding protein (AKAP 350) was specifically identified in centrosomes isolated from this cell line, whereas a Golgi fraction has previously been demonstrated to contain an 85-kDa RII-binding protein (AKAP 85). AKAP 350 is highly insoluble and can partially be extracted from centrosomes as a complex of AKAP 350 and RII subunit. AKAP 350 was identified as a specific centrosomal protein previously demonstrated in the pericentriolar material. The potential significance of a specific subcellular distribution for different RII-binding proteins in nonneuronal cells is discussed.  相似文献   

16.
The type II cAMP-dependent protein kinase (PKA) is localized to specific subcellular environments through binding of dimeric regulatory subunits (RII) to anchoring proteins. Cytoskeletal localization occurs through RII dimer interaction with the PKA substrate molecule microtubule-associated protein 2 (MAP2). RII alpha deletion mutants and RII alpha/endonexin chimeras retained MAP2 binding activity if they contained the first 79 residues of the molecule. Disruption of RII alpha dimerization always prevented MAP2 interaction because 1) RII delta 1-14 (an amino-terminal deletion mutant lacking residues 1-14) was unable to bind MAP2 or form dimers, and 2) a modified RII alpha monomer including residues 1-14 did not bind MAP2. Chimeric proteins containing the first 30 residues of RII alpha fused to endonexin II formed dimers but did not bind MAP2. This suggested other side-chains between residues 30-79 also participate in MAP2 interaction. Peptide studies indicate additional contact with MAP2 may occur through an acidic region (residues 68-82) close to the RII autoinhibitor domain. Therefore, anchored PKA holoenzyme topology may position the catalytic subunit and MAP2 as to allow its preferential phosphorylation upon kinase activation.  相似文献   

17.
We have reported previously (Horowitz, J. A., Toeg, H., and Orr, G. A. (1984) J. Biol. Chem. 259, 832-838) that most of the type II cAMP-dependent protein kinases in rat sperm are associated with the flagellum. We have now identified flagellar polypeptides which are capable of forming tight complexes with the regulatory subunit of type II cAMP-dependent protein kinase (RII). Flagellar RII-binding polypeptides were identified using an RII overlay/immunoblot procedure and had apparent subunit Mr of 120,000, 80,000, and 57,000 in rat and 120,000 and 57,000 in bovine flagella. RII is released from the flagellum by disulfide reducing agents, e.g. 1 mM dithiothreitol (DTT). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie Blue staining of the DTT-released material shows that a limited subpopulation of flagellar polypeptides are solubilized by disulfide-reducing agents. Neither tubulin, the dynein ATPase, or any of the RII-binding proteins are released by 1 mM DTT, and thin section electron microscopy revealed that the morphology of the flagellum is unaltered by reducing conditions. Our data established that RII is not linked to the flagellum via a direct disulfide bridge. We propose that RII is released from the flagellum, a highly disulfide cross-linked structure, due to structural changes in the flagellum which disrupts the interaction between RII and its binding proteins.  相似文献   

18.
A-kinase anchoring proteins tether cAMP-dependent protein kinase (PKA) to specific subcellular locations. The purpose of this study was to use fluorescence resonance energy transfer to monitor binding events in living cells between the type II regulatory subunit of PKA (RII) and the RII-binding domain of the human thyroid RII anchoring protein (Ht31), a peptide containing the PKA-binding domain of an A-kinase anchoring protein. RII was linked to enhanced yellow fluorescent protein (EYFP), Ht31 was linked to enhanced cyan fluorescent protein (ECFP), and these constructs were coexpressed in Chinese hamster ovary cells. Upon excitation of the donor fluorophore, Ht31.ECFP, an increase in emission of the acceptor fluorophore, RII.EYFP, and a decrease in emission from Ht31.ECFP were observed. The emission ratio (acceptor/donor) was increased 2-fold (p < 0.05) in cells expressing Ht31.ECFP and RII.EYFP compared with cells expressing Ht31P.ECFP, the inactive form of Ht31, and RII.EYFP. These results provide the first in vivo demonstration of RII/Ht31 interaction in living cells and confirm previous in vitro findings of RII/Ht31 binding. Using surface plasmon resonance, we also showed that the green fluorescent protein tags did not significantly alter the binding of Ht31 to RII. Thus, fluorescence resonance energy transfer can be used to directly monitor protein-protein interactions of the PKA signaling pathway in living cells.  相似文献   

19.
We have reported that a novel c-Myc-binding protein, AMY-1, binds to cAMP-dependent protein kinase-anchoring protein 149 (AKAP149) and its splicing variant, AKAP84 and is localized in the mitochondria in a complex with RII, a regulatory subunit of cAMP-dependent protein kinase (PKA) (Furusawa, M., Ohnishi, T., Taira, T., Iguchi-Ariga, S. M. M., and Ariga, H. (2001) J. Biol. Chem. 276, 36647-36651). In this study, we further found that AMY-1 competitively bound to either AKAP95 or AKAP84 in the nucleus and the cytoplasm, respectively, in a concentration-dependent manner of either AKAP. Like AKAP84, AMY-1 was found to bind to the RII-binding region of AKAP95 in vivo and in vitro and to make a ternary complex with RII. It was also found that the formation of the complex of AMY-1 with AKAP84/95 and RII prevented a catalytic subunit from binding to this AKAP complex, leading to suppression of PKA activity. These findings suggest that AMY-1 is an important modulator of PKA.  相似文献   

20.
Agents that increase intracellular cAMP are potent stimulators of sperm motility. Anchoring inhibitor peptides, designed to disrupt the interaction of the cAMP-dependent protein kinase A (PKA) with A kinase-anchoring proteins (AKAPs), are potent inhibitors of sperm motility. These data suggest that PKA anchoring is a key biochemical mechanism controlling motility. We now report the isolation, identification, cloning, and characterization of AKAP110, the predominant AKAP detected in sperm lysates. AKAP110 cDNA was isolated and sequenced from mouse, bovine, and human testis libraries. Using truncated mutants, the RII-binding domain was identified. Alignment of the RII-binding domain on AKAP110 to those from other AKAPs reveals that AKAPs contain eight functionally conserved positions within an amphipathic helix structure that are responsible for RII interaction. Northern analysis of eight different tissues detected AKAP110 only in the testis, and in situ hybridization analysis detected AKAP110 only in round spermatids, suggesting that AKAP110 is a protein found only in male germ cells. Sperm cells contain both RI, located primarily in the acrosomal region of the head, and RII, located exclusively in the tail, regulatory subunits of PKA. Immunocytochemical analysis detected AKAP110 in the acrosomal region of the sperm head and along the entire length of the principal piece. These data suggest that AKAP110 shares compartments with both RI and RII isoforms of PKA and may function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号