首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative stability of human respiration during progressive hypoxia   总被引:2,自引:0,他引:2  
We have systematically studied the relationship between the relative stability (R) of respiration and the loop gain (LG) of the CO2 control system in 15 healthy awake adult males during progressive hypoxia. R was measured by the ventilatory oscillations after brief (less than 10 s) CO2 challenges. Control theory suggests that such oscillations are completely governed by LG. A significant positive correlation was found between R and LG (r = 0.74, P less than 0.01, n = 85). A minimal mathematical model of respiratory control was used to predict R as a function of LG. Serial correlation analysis (r = 0.09, P greater than 0.1) of the residuals indicated statistical agreement between predictions and observations. The mean residual (0.011) was not significantly different from zero (P greater than 0.1). Also, as the model predicted, sustained periodic breathing (PB) occurred whenever the estimated LG was greater than unity. The mean LG breathing room air was 0.51 and for the 13 epochs of PB was 1.17 (range 0.71-1.65). It is concluded that PB is a quantitative extension of the relative stability continuum and corresponds to unstable operation of the CO2 control system. Furthermore, relative stability can be quantitatively predicted for each subject by a minimal mathematical model.  相似文献   

2.
Periodic breathing in the mouse.   总被引:3,自引:0,他引:3  
The hypothesis was that unstable breathing might be triggered by a brief hypoxia challenge in C57BL/6J (B6) mice, which in contrast to A/J mice are known not to exhibit short-term potentiation; as a consequence, instability of ventilatory behavior could be inherited through genetic mechanisms. Recordings of ventilatory behavior by the plethsmography method were made when unanesthetized B6 or A/J animals were reoxygenated with 100% O(2) or air after exposure to 8% O(2) or 3% CO(2)-10% O(2) gas mixtures. Second, we examined the ventilatory behavior after termination of poikilocapnic hypoxia stimuli in recombinant inbred strains derived from B6 and A/J animals. Periodic breathing (PB) was defined as clustered breathing with either waxing and waning of ventilation or recurrent end-expiratory pauses (apnea) of > or = 2 average breath durations, each pattern being repeated with a cycle number > or = 3. With the abrupt return to room air from 8% O(2), 100% of the 10 B6 mice exhibited PB. Among them, five showed breathing oscillations with apnea, but none of the 10 A/J mice exhibited cyclic oscillations of breathing. When the animals were reoxygenated after 3% CO(2)-10% O(2) challenge, no PB was observed in A/J mice, whereas conditions still induced PB in B6 mice. (During 100% O(2) reoxygenation, all 10 B6 mice had PB with apnea.) Expression of PB occurred in some but not all recombinant mice and was not associated with the pattern of breathing at rest. We conclude that differences in expression of PB between these strains indicate that genetic influences strongly affect the stability of ventilation in the mouse.  相似文献   

3.
Hypoxia-induced periodic breathing in newborn lambs   总被引:1,自引:0,他引:1  
This study was designed to elucidate the effect of hypoxia on the breathing rhythmicity and the effect of hypoxia on periodic breathing (PB) in two groups of newborn lambs (less than 2 days and 10 days of age). Lambs undergoing a hypoxic ventilatory test [0.08 inspired O2 fraction (FIo2) for 13 min] experienced no apnea or PB in hypoxia, but all developed PB during the 1-min period immediately after their abrupt return to 0.21 FIo2. This PB occurred when alternation of arterial PO2 and PCO2 in mild hypoxic and hypocapnic conditions induced an overshoot-undershoot response of the chemical drive to breathe. The magnitude of PB was found to be greater in the animals with a higher peripheral chemoreflex sensitivity to hypoxia but ceased altogether when the hypoxic-hypocapnic conditions were resolved. When these conditions were removed more quickly, that is, when the animals were returned either to 0.50 FIo2 or to 0.03 FIco2, no PB was observed. To clarify the role of hypoxia as a central depressant on the genesis of PB, we tested to determine whether additional central tissue hypoxia, using carboxyhemoglobin (30%), would worsen the episodes of PB. No effect on breathing rhythmicity was observed. These findings suggest not only that, in newborn animals and adults, the mechanisms of post-hypoxia-induced PB are identical but that the PB elicited in mild hypoxic conditions is a peripheral chemoreflex-mediated event rather than a centrally mediated one.  相似文献   

4.
Accurately predicting plant function and global biogeochemical cycles later in this century will be complicated if stomatal conductance (g(s)) acclimates to growth at elevated [CO(2)], in the sense of a long-term alteration of the response of g(s) to [CO(2)], humidity (h) and/or photosynthetic rate (A). If so, photosynthetic and stomatal models will require parameterization at each growth [CO(2)] of interest. Photosynthetic acclimation to long-term growth at elevated [CO(2)] occurs frequently. Acclimation of g(s) has rarely been examined, even though stomatal density commonly changes with growth [CO(2)]. Soybean was grown under field conditions at ambient [CO(2)] (378 micromol mol(-1)) and elevated [CO(2)] (552 micromol mol(-1)) using free-air [CO(2)] enrichment (FACE). This study tested for stomatal acclimation by parameterizing and validating the widely used Ball et al. model (1987, Progress in Photosynthesis Research, vol IV, 221-224) with measurements of leaf gas exchange. The dependence of g(s) on A, h and [CO(2)] at the leaf surface was unaltered by long-term growth at elevated [CO(2)]. This suggests that the commonly observed decrease in g(s) under elevated [CO(2)] is due entirely to the direct instantaneous effect of [CO(2)] on g(s) and that there is no longer-term acclimation of g(s) independent of photosynthetic acclimation. The model accurately predicted g(s) for soybean growing under ambient and elevated [CO(2)] in the field. Model parameters under ambient and elevated [CO(2)] were indistinguishable, demonstrating that stomatal function under ambient and elevated [CO(2)] could be modelled without the need for parameterization at each growth [CO(2)].  相似文献   

5.
Paced breathing (PB) around 0.25 Hz has been advocated as a means to avoid confounding and to standardize measurements in short-term investigations of autonomic cardiovascular regulation. Controversy remains, however, as to whether it causes any alteration in autonomic control. We addressed this issue in 40 supine, middle-aged, healthy volunteers by assessing the changes induced by PB (0.25 Hz for 8 min) on 1) ventilatory parameters, 2) the indexes of autonomic control of cardiovascular function, and 3) the spectral indexes of cardiovascular variability. Subjects were grouped into group 1 (n = 31), if spontaneous breathing was regular and within the high-frequency (HF) band (0.15-0.45 Hz), or group 2 (n = 9), if it was irregular or slow (< 0.15 Hz). In both groups, PB was accompanied by an increase in minute ventilation (both groups, P < 0.01), whereas tidal volume increased only in group 1 (P = 0.0003). End-tidal CO2 decreased by [median (lower quartile, upper quartile)] -0.2 (-0.5, -0.1)% (group 1, P < 0.0001) and -0.6 (-0.8, -0.5)% (group 2, P = 0.008). Mean R-R interval and systolic and diastolic pressure remained remarkably stable (all P > or = 0.13, both groups). No significant changes were observed in spectral indexes of R-R and pressure variability (all P > or = 0.12, measured only in group 1 to avoid confounding), except in the HF power of pressure signals, which significantly increased (all P < 0.05) in association with increased tidal volume. In conclusion, PB at 0.25 Hz causes a slight hyperventilation and does not affect traditional indexes of autonomic control or, in subjects with spontaneous breathing in the HF band, most relevant spectral indexes of cardiovascular variability. These findings support the notion that PB does not alter cardiovascular autonomic regulation compared with spontaneous breathing.  相似文献   

6.
In a search for CO2 chemoreceptor neurons in the brain stem, we used immunocytochemistry to monitor the expression of neuronal c-fos, a marker of increased activity, after 1 h of exposure to CO2 in five groups of Sprague-Dawley rats (294 +/- 20 g): five air breathing controls, three breathing 10% CO2, three breathing 13% CO2, three breathing 15% CO2, and three breathing 15% CO2 and treated with morphine (10 mg/kg sc). After exposure the rats were anesthetized with pentobarbital sodium and perfused intracardially with 4% paraformaldehyde. The brain stem was removed and cryoprotected, and then 50-microns frozen sections were cut and immunostained for the fos protein. Brain stem fos-immunoreactive neurons were plotted and counted in the superficial 0.5 mm of the ventral medullary surface. Thirteen to 15% CO2 evoked fos-like immunoreactivity (FLI) in 321 +/- 146 neurons/rat. Significant CO2-induced labeling was confined within the superficial 150 microns: 67% of identified cells were less than 50 microns below the surface, greater than 90% between 1.0 and 3.0 mm from the midline, and approximately 60% in the rostral half of the medulla. Thirteen to 15% CO2 also evoked FLI in the area of the nucleus tractus solitarius but not in other medullary regions. Morphine (10 mg/kg sc) did not suppress high CO2-evoked FLI in either the ventral medullary surface or the nucleus tractus solitarius, although it eliminated excitement and hyperventilation. We suggest that respiratory CO2 chemoreceptor neurons can be identified in rats by their expression of c-fos after 1 h of hypercapnia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study evaluated three models of microbial temperature kinetics using CO2 respiration data from aerobic solid-state biodegradation experiments. The models included those of Andrews and Kambhu/Haug, Ratkowsky et al., and the Cardinal Temperature Model with Inflection (CTMI) of Rosso et al. A parameter estimation routine implemented the Complex-Box search method for each model on 48 data sets collected during the composting of synthetic food waste or sewage-sludge (biosolids) mixed with maple wood chips at different oxygen concentrations and extents of decomposition. Each of the three nonlinear temperature kinetic functions proved capable of modeling a wide range of experimental data sets. However, the models differed widely in the consistency of their parameters. Parameters in the CTMI model were more stable over the course of the degradation process, and that variability which did arise was directly related to changes in the microbial process. Additional benefits of the CTMI model include the ease of parameter determinations, which can be approximated directly from laboratory experiments or full-scale system analysis, and the direct value of its parameters in engineering design and process control under a wide range of biodegradation conditions.  相似文献   

8.
9.
CO(2) homeostasis during periodic breathing in obstructive sleep apnea.   总被引:1,自引:0,他引:1  
The contribution of apnea to chronic hypercapnia in obstructive sleep apnea (OSA) has not been clarified. Using a model (D. M. Rapoport, R. G. Norman, and R. M. Goldring. J. Appl. Physiol. 75: 2302-2309, 1993), we previously illustrated failure of CO(2) homeostasis during periodic breathing resulting from temporal dissociation between ventilation and perfusion ("temporal V/Q mismatch"). This study measures acute kinetics of CO(2) during periodic breathing and addresses interapnea ventilatory compensation for maintenance of CO(2) homeostasis in 11 patients with OSA during daytime sleep (37-171 min). Ventilation and expiratory CO(2) and O(2) fractions were measured on a breath-by-breath basis by means of a tight-fitting full facemask. Calculations included CO(2) excretion, metabolic CO(2) production, and CO(2) balance (metabolic CO(2) production - exhaled CO(2)). CO(2) balance was tabulated for each apnea/hypopnea event-interevent cycle and as a cumulative value during sleep. Cumulative CO(2) balance varied (-3,570 to +1,388 ml). Positive cumulative CO(2) balance occurred in the absence of overall hypoventilation during sleep. For each cycle, positive CO(2) balance occurred despite increased interevent ventilation to rates as high as 45 l/min. This failure of CO(2) homeostasis was dependent on the event-to-interevent duration ratio. The results demonstrate that 1) periodic breathing provides a mechanism for acute hypercapnia in OSA, 2) acute hypercapnia during periodic breathing may occur without a decrease in average minute ventilation, supporting the presence of temporal V/Q mismatch, as predicted from our model, and 3) compensation for CO(2) accumulation during apnea/hypopnea may be limited by the duration of the interevent interval. The relationship of this acute hypercapnia to sustained chronic hypercapnia in OSA remains to be further explored.  相似文献   

10.
The human nose serves vital physiological functions, including warming, filtration, humidification, and olfaction. These functions are based on transport phenomena that depend on nasal airflow patterns and turbulence. Accurate prediction of these airflow properties requires careful selection of computational fluid dynamics models and rigorous validation. The validation studies in the past have been limited by poor representations of the complex nasal geometry, lack of detailed airflow comparisons, and restricted ranges of flow rate. The objective of this study is to validate various numerical methods based on an anatomically accurate nasal model against published experimentally measured data under breathing flow rates from 180 to 1100 ml/s. The numerical results of velocity profiles and turbulence intensities were obtained using the laminar model, four widely used Reynolds-averaged Navier-Stokes (RANS) turbulence models (i.e., k-ε, standard k-ω, Shear Stress Transport k-ω, and Reynolds Stress Model), large eddy simulation (LES) model, and direct numerical simulation (DNS). It was found that, despite certain irregularity in the flow field, the laminar model achieved good agreement with experimental results under restful breathing condition (180 ml/s) and performed better than the RANS models. As the breathing flow rate increased, the RANS models achieved more accurate predictions but still performed worse than LES and DNS. As expected, LES and DNS can provide accurate predictions of the nasal airflow under all flow conditions but have an approximately 100-fold higher computational cost. Among all the RANS models tested, the standard k-ω model agrees most closely with the experimental values in terms of velocity profile and turbulence intensity.  相似文献   

11.
The relative effects of temperature and CO2 on the blood flow in the common carotid artery (CCBF) were investigated in vagotomized, paralyzed rabbits under urethane-chloralose general anaesthesia with artificial ventilation. During hypothermia a 52% fall of CCBF was observed in rabbits ventilated by the classic method. Administration of a hyperkapnic mixture for breathing caused a further 16% CCBF fall, with a simultaneous rise in PaCO2 by 23%. During ventilation with a respirator triggered by phrenic nerve activity hypothermia caused a 30% CCBF fall without changes in PaCO2 value. Administration of the hyperkapnic mixture for breathing caused, in these circumstances, a 9% CCBF fall with a 7% PaCO2 increase. Hyperthermia caused during ventilation by the classic method a 42% rise in CCBF and a 22% PaCO2 rise. The hyperkapnic mixture given for breathing decreased the CCBF by 9% and increased the PaCO2 by 15%. On the other hand, during ventilation with the respirator triggered by phrenic nerve activity no changes were observed in these parameters. This suggests that the thermic stimulus exerts a direct effect on the regulation of the blood flow to the brain, and during hypothermia it prevails over the stimulus produced by CO2.  相似文献   

12.
The tidal breathing lung model described for the sine-wave technique (D. J. Gavaghan and C. E. W. Hahn. Respir. Physiol. 106: 209-221, 1996) is generalized to continuous ventilation-perfusion and ventilation-volume distributions. This tidal breathing model is then applied to the multiple inert gas elimination technique (P. D. Wagner, H. A. Saltzman, and J. B. West. J. Appl. Physiol. 36: 588-599, 1974). The conservation of mass equations are solved, and it is shown that 1) retentions vary considerably over the course of a breath, 2) the retentions are dependent on alveolar volume, and 3) the retentions depend only weakly on the width of the ventilation-volume distribution. Simulated experimental data with a unimodal ventilation-perfusion distribution are inserted into the parameter recovery model for a lung with 1 or 2 alveolar compartments and for a lung with 50 compartments. The parameters recovered using both models are dependent on the time interval over which the blood sample is taken. For best results, the blood sample should be drawn over several breath cycles.  相似文献   

13.
We determined the effects on breathing of transient ventilatory overshoots and concomitant hypocapnia, as produced by pressure support mechanical ventilation (PSV), in intact and carotid body chemoreceptor denervated (CBX) sleeping dogs. In the intact dog, PSV-induced transient increases in tidal volume and hypocapnia caused apnea within 10-11 s, followed by repetitive two-breath clusters separated by apneas, i.e., periodic breathing (PB). After CBX, significant expiratory time prolongation did not occur until after 30 s of PSV-induced hypocapnia, and PB never occurred. Average apneas of 8.4 +/- 1-s duration after a ventilatory overshoot required a decrease below eupnea of end-tidal Pco(2) 5.1 +/- 0.4 Torr below eupnea in the intact animal and 10.1 +/- 2 Torr in the CBX dog, where the former reflected peripheral and the latter central dynamic CO(2) chemoresponsiveness, as tested in the absence of peripheral chemoreceptor input. Hyperoxia when the dogs were intact shortened PSV-induced apneas and reduced PB but did not mimic the effects of CBX. We conclude that, during non-rapid eye movement sleep, carotid chemoreceptors are required to produce apneas that normally occur after a transient ventilatory overshoot and for PB.  相似文献   

14.
We have tested the hypothesis that interactions among eight parameters of the respiratory and cardiovascular systems that determine the loop gain (LG) of the respiratory CO2 feedback control system might account for the degree of stability or instability of breathing patterns in healthy sleeping volunteers as well as in familial dysautonomia (FD) and congenital central hypoventilation syndrome (CCHS) patients. The predictability of cycle duration was tested as well. We measured the values of CO2 sensitivity, CO2 delivery capacity in the circulation, circulation delay, mean lung volume for CO2, and mixed venous PCO2 in 8 FD patients, 2 CCHS patients, and 19 healthy controls. The values of these parameters were used in a mathematical model to compute the LG of the respiratory control system during sleep for each epoch of respiration analyzed. The strength of the ventilatory oscillations (R) was quantified using power density spectra of the ventilation time series. All subjects were studied at inspiratory O2 concentrations (FIO2) of 0.21 and 0.15; CCHS patients and controls were also studied at 0.12 FIO2 to examine the effect of steady-state hypoxia on respiratory system stability. In 2 FD patients, LG was elevated at both levels of FIO2 and periodic breathing was observed; the values of R were elevated. Elevated mixed venous PCO2 and reduced CO2 delivery capacity were chiefly responsible for the abnormally high LG observed. In three healthy volunteers, high LG and unstable patterns were associated with high chemosensitivity. The CCHS patients, however, remained stable even at 0.12 FIO2 because LG remained equivalent to zero due to a lack of chemosensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In this study, it is shown how to transfer tared aliquots of (HCO3 + CO2)-containing luminal fluids directly into the mercury-sealed chamber of a modified Van Slyke apparatus and how to obtain direct as well as indirect manometric determinations of dissolved CO2 ([CO2]f) in each aliquot of such fluids. It is next shown that the pattern of in vitro luminal acidification in an isolated turtle bladder sac depends upon the prior in vivo ambient temperature to which the donor turtle had become adapted. Under in vivo conditions, the food intake, physical activity, and acid excretion of 32 degrees C-adapted turtles are greater than those of 21 degrees C or 26 degrees C-adapted turtles. Under in vitro conditions of incubating isolated bladder sacs (from 21, 26, and 32 degrees C turtles) in (HCO3 + CO2)-containing Ringer media at a single temperature (21 degrees C), the patterns of luminal acidification are as follows: (a) The rate of depletion of luminal [HCO3] is greatest in bladders from the 32 degrees C-adapted turtles. (b) Concomitant decreases in luminal [CO2]f, [HCO3], and pH (the 'CO2-decreasing patterns' of luminal acidification) develop in all bladders from 32 degrees C turtles, in half of those from 26 degrees C turtles, but in less than one-fifth of those from 21 degrees C-adapted turtles: and (c) a CO2-increasing pattern of luminal acidification is found in most of the bladders from 21 degrees C-adapted turtles. A postulated bicarbonate ion-reabsorbing pump is consistent with all of these patterns of luminal acidification.  相似文献   

16.
To better understand factors that influence carbon monoxide (CO) washout rates, we utilized a multicompartment mathematical model to predict rates of CO uptake, distribution in vascular and extravascular (muscle vs. other soft tissue) compartments, and washout over a range of exposure and washout conditions with varied subject-specific parameters. We fitted this model to experimental data from 15 human subjects, for whom subject-specific parameters were known, multiple washout carboxyhemoglobin (COHb) levels were available, and CO exposure conditions were identical, to investigate the contributions of exposure conditions and individual variability to CO washout from blood. We found that CO washout from venous blood was biphasic and that postexposure times at which COHb samples were obtained significantly influenced the calculated CO half times (P < 0.0001). The first, more rapid, phase of CO washout from the blood reflected the loss of CO to the expired air and to a slow uptake by the muscle compartment, whereas the second, slower washout phase was attributable to CO flow from the muscle compartment back to the blood and removal from blood via the expired air. When the model was used to predict the effects of varying exposure conditions for these subjects, the CO exposure duration, concentration, peak COHb levels, and subject-specific parameters each influenced washout half times. Blood volume divided by ventilation correlated better with half-time predictions than did cardiac output, muscle mass, or ventilation, but it explained only approximately 50% of half-time variability. Thus exposure conditions, COHb sampling times, and individual parameters should be considered when estimating CO washout rates for poisoning victims.  相似文献   

17.
Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessary to achieve therapeutic loading conditions in individuals with paralyzed limbs. Although numerous muscle models are available, three modeling approaches were chosen that can accommodate a variety of stimulation input patterns. To our knowledge, no direct comparisons between models using paralyzed muscle have been reported. The three models include 1) a simple second-order linear model with three parameters and 2) two six-parameter nonlinear models (a second-order nonlinear model and a Hill-derived nonlinear model). Soleus muscle forces from four individuals with complete, chronic SCI were used to optimize each model's parameters (using an increasing and decreasing frequency ramp) and to assess the models' predictive accuracies for constant and variable (doublet) stimulation trains at 5, 10, and 20 Hz in each individual. Despite the large differences in modeling approaches, the mean predicted force errors differed only moderately (8-15% error; P=0.0042), suggesting physiological force can be adequately represented by multiple mathematical constructs. The two nonlinear models predicted specific force characteristics better than the linear model in nearly all stimulation conditions, with minimal differences between the two nonlinear models. Either nonlinear mathematical model can provide reasonable force estimates; individual application needs may dictate the preferred modeling strategy.  相似文献   

18.
PurposeIn modulated radiotherapy, breathing motion can lead to Interplay (IE) and Blurring (BE) effects that can modify the delivered dose. The aim of this work is to present the implementation, the validation and the use of an open-source Monte-Carlo (MC) model that computes the delivered dose including these motion effects.MethodsThe MC model of the Varian TrueBeam was implemented using GATE. The dose delivered by different modulated plans is computed for several breathing patterns. A validation of these MC predictions is achieved by a comparison with measurements performed using a dedicated programmable motion platform, carrying a quality assurance phantom. A specific methodology was used to separate the IE and the BE. The influence of different motion parameters (period, amplitude, shape) and plan parameters (volume margin, dose per fraction) was also analyzed.ResultsThe MC model was validated against measurement performed with motion with a mean 3D global gamma index pass rate of 97.5% (3%/3 mm). A significant correlation is found between the IE and the period and the antero-posterior amplitude of the motion but not between the IE and the CTV margin or the shape of motion. The results showed that the IE increases D2% and decreases the D98% of CTV with mean values of +6.9% and −3.3% respectively.ConclusionsWe validated the feasibility to assess the IE using a MC model. We found that the most important parameter is the number of breathing cycles that must be greater than 20 for one arc to limit the IE.  相似文献   

19.
Transient starch production is thought to strongly control plant growth and response to elevated CO2. We tested this hypothesis with an experimentally based mechanistic model in Arabidopsis thaliana. Experiments were conducted on wild-type (WT) A. thaliana, starch-excess (sex1) and starchless (pgm) mutants under ambient and elevated CO2 conditions to determine parameters and validate the model. The model correctly predicted that mutant growth is approx. 20% of that in WT, and the absolute response of both mutants to elevated CO2 is an order of magnitude lower than in WT. For sex1, direct starch unavailability explained the growth responses. For pgm, we demonstrated experimentally that maintenance respiration is proportional to leaf soluble sugar concentration, which gave the necessary feedback mechanism on modelled growth. Our study suggests that the effects of sugar-starch cycling on growth can be explained by simple allocation processes, and the maximum rate of leaf growth (sink capacity) exerts a strong control over the response to elevated CO2 of herbaceous plants such as A. thaliana.  相似文献   

20.
We determined whether the [CO2] in the upper airways (UA) can influence breathing in ponies and whether UA [CO2] contributes to the attenuation of a thermal tachypnea during periods of elevated inspired CO2. Six ponies were studied 1 mo after chronic tracheostomies were created. For one protocol the ponies were breathing room air through a cuffed endotracheal tube. Another smaller tube was placed in the tracheostomy and directed up the airway. By use of this tube, a pump, and prepared gas mixtures, UA [CO2] was altered without affecting alveolar or arterial PCO2. When the ponies were at a neutral environmental temperature (TA) and breathing frequency (f) was 8 breaths X min-1, increasing UA [CO2] up to 18-20% had no effect on f. However, when TA was increased 20 degrees C to increase f to 50 breaths X min-1, then increasing UA [CO2] to 6% or to 18-20% reduced f by 5 +/- 1.7 (SE) and 12 +/- 1.6 breaths X min-1, respectively (t = 3.3, P less than 0.01). These data suggest that in the pony there exists a UA CO2-H+ sensory mechanism. For a second protocol the ponies were breathing a 6% CO2 gas mixture for 15 min in the normal fashion over the entire airway (nares breathing, NBr) or they were breathing this gas mixture for 15 min through the cuffed endotracheal tube (TBr). At a neutral TA, increasing inspired [CO2] to 6% resulted in a 6-breaths X min-1 increase in f during both NBr and TBr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号