首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sevigny MB  Li CF  Alas M  Hughes-Fulford M 《FEBS letters》2006,580(28-29):6533-6536
Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in the prostanoid biosynthesis pathway, converting arachidonic acid into prostaglandin H(2). COX-2 exists as 72 and 74kDa glycoforms, the latter resulting from an additional oligosaccharide chain at residue Asn(580). In this study, Asn(580) was mutated to determine the biological significance of this variable glycosylation. COS-1 cells transfected with the mutant gene were unable to express the 74kDa glycoform and were found to accumulate more COX-2 protein and have five times greater COX-2 activity than cells expressing both glycoforms. Thus, COX-2 turnover appears to depend upon glycosylation of the 72kDa glycoform.  相似文献   

2.
In all eukaryotes N-glycosylation is the most prevalent protein modification of secretory and membrane proteins. Although the N-glycosylation capacity and the individual steps of the N-glycan processing pathway have been well studied in the model plant Arabidopsis thaliana, little attention has been paid to the characterization of the glycosylation status of individual proteins. We report here the structural analysis of all N-glycans present on the endogenous thioglucoside glucohydrolases (myrosinases) TGG1 and TGG2 from A. thaliana. All nine glycosylation sites of TGG1 and all four glycosylation sites of TGG2 are occupied by oligomannosidic structures with Man5GlcNAc2 as the major glycoform. Analysis of the oligomannosidic isomers from wild-type plants and mannose trimming deficient mutants by liquid chromatography with porous graphitic carbon and mass spectrometry revealed that the N-glycans from both myrosinases are processed by Golgi-located α-mannosidases.  相似文献   

3.
The MF alpha 1 gene encodes a precursor, prepro-alpha-factor, that undergoes several proteolytic processing steps within the classical secretory pathway to produce the mature peptide pheromone, alpha-factor. To investigate the role of structural features of the MF alpha 1 precursor in alpha-factor production, we analyzed the effect of mf alpha 1 mutations that alter precursor structure in a number of ways. These mutations resulted in decreased alpha-factor secretion and intracellular accumulation of pro-alpha-factor. With the exception of the mutant lacking all three N glycosylation sites, the pro-alpha-factor forms that accumulated were core glycosylated but had not yet undergone the addition of outer chain carbohydrate. The delay, therefore, occurred at a step prior to the first proteolytic processing step involved in maturation of the precursor and was probably due to inefficient endoplasmic reticulum-to-Golgi transport. Elimination of all three N-glycosylation sites caused a delay in disappearance of intracellular precursor, and alpha-factor secretion was also slowed. These data indicate that N glycosylation is important but not essential for transport of the precursor through the secretory pathway. The decreased alpha-factor secretion and increased precursor accumulation seen with many different structural changes of pro-alpha-factor indicate that the secretory pathway is extremely sensitive to changes in precursor structure. This sensitivity could cause inefficient secretion of heterologous proteins and hybrids between MF alpha 1 and heterologous proteins in yeast cells.  相似文献   

4.
A number of genes have been shown to be transcribed specifically during sporulation in Saccharomyces cerevisiae, yet their developmental function is unknown. The SPR1 gene is transcribed during only the late stages of sporulation. We have sequenced the SPR1 gene and found that it has extensive DNA and protein sequence homology to the S. cerevisiae EXG1 gene which encodes an exo-1,3-beta-glucanase expressed during vegetative growth (C. R. Vasquez de Aldana, J. Correa, P. San Segundo, A. Bueno, A. R. Nebrada, E. Mendez, and F. del Ray, Gene 97:173-182, 1991). We show that spr1 mutant cells do not hydrolyze p-nitrophenyl-beta-D-glucoside or laminarin in a whole-cell assay for exo-1,3-beta-glucanases. In addition to the absence of this enzymatic activity, spr1 mutant spores exhibit reduced thermoresistance relative to isogenic wild-type spores. These observations are consistent with the notion that SPR1 encodes a sporulation-specific exo-1,3-beta-glucanase.  相似文献   

5.
Islet amyloid is a pathologic characteristic of the pancreas in type 2 diabetes comprised mainly of the beta-cell peptide islet amyloid polypeptide (IAPP; amylin). We used a pulse-chase approach to investigate the kinetics of processing and secretion of the IAPP precursor, proIAPP, in beta cells. By only 20 min after synthesis, a COOH-terminally processed proIAPP intermediate (approximately 6 kDa) was already present in beta cells. Formation of this NH2-terminally extended intermediate was not prevented by arresting secretory pathway transport at the trans-Golgi network (TGN) by either brefeldin A or temperature blockade, suggesting that this initial cleavage step occurs in the TGN before entry of (pro)IAPP into granules. Mature IAPP (approximately 4 kDa) was not detected until 60 min of chase, suggesting that NH2-terminal cleavage occurs in granules. Cells chased in low glucose without Ca2+ or with diazoxide, to block regulated release, secreted both proIAPP (approximately 8 kDa) and a partially processed form (approximately 6 kDa) via the constitutive secretory pathway. Stimulation of regulated secretion resulted in secretion primarily of mature IAPP as well as low levels of both unprocessed (approximately 8 kDa) and partially processed (approximately 6 kDa) proIAPP. We conclude that normal processing of proIAPP is a two-step process initiated by cleavage at its COOH terminus (likely by prohormone convertase 1/3 in the TGN) followed by cleavage at its NH2 terminus (by prohormone convertase 2 in granules) to form IAPP. Both proIAPP and its NH2-terminally extended intermediate appear to be normal secretory products of the beta cell that can be released via either the regulated or constitutive secretory pathways.  相似文献   

6.
Pregnancy associated glycoproteins (PAGs) are extensively glycosylated secretory proteins of ruminant trophoblast cells. In cattle placenta several PAG cDNAs are expressed, but the variety of correspondent proteins and their degree of glycosylation are not well characterized. Thus, we purified PAGs by using a protocol which included a lectin (Vicia villosa agglutinin) affinity chromatography. Due to their specific glycosylation pattern, PAGs derived from binucleate trophoblast giant cells were highly enriched by this protocol. PAGs were purified from cotyledons of 2 day 100 placentas and from a single placenta at day 155 and 180. In all samples three major bands (75; 66; 56 kDa) were detected by one-dimensional SDS-PAGE. Mass-spectrometric analysis identified the 75 kDa band as a mixture of PAG-7 and PAG-6, the 66 kDa band as PAG-1 and the 56 kDa band as PAG-17. N-terminal sequencing of the day 100 sample confirmed the mass spectrometric identifications. Enzymatic release of N-glycans with peptide-N-glycanase-F from PAGs reduced the molecular weight to approximately 37 kDa which corresponds to the theoretical molecular mass of PAGs. Limited peptide-N-glycanase-F treatment revealed that all four N-glycosylation sites are quantitatively occupied in PAG-1. Compared to PAG-1 the number of potential N-glycosylation sites is lower in PAG-17 (three sites) and higher in PAG-6 and -7 (five and six sites, respectively). This suggests that the number of attached N-glycans is the main determinant of molecular mass of bovine PAGs. The degree of glycosylation may be a major factor regulating the plasma half life of PAGs.  相似文献   

7.
Yeast cell surface growth is accomplished by constitutive secretion and plasma membrane assembly, culminating in the fusion of vesicles with the bud membrane. Coordination of secretion and membrane assembly has been investigated by examining the biogenesis of plasma membrane ATPase (PM ATPase) in secretion-defective (sec) strains of Saccharomyces cerevisiae. PM ATPase is synthesized as a approximately 106-kD polypeptide that is not detectably modified by asparagine-linked glycosylation or proteolysis during transit to the plasma membrane. Export of the PM ATPase requires the secretory pathway. In sec1, a mutant defective in the last step of secretion, large amounts of Golgi-derived vesicles are accumulated. Biochemical characterization of this organelle has demonstrated that PM ATPase and the secretory enzyme, acid phosphatase, are transported in a single vesicle species.  相似文献   

8.
Effect of N-linked glycosylation on hepatic lipase activity   总被引:2,自引:0,他引:2  
Hepatic lipase (HL) is a secretory protein synthesized in hepatocytes and bound to liver endothelium. Previous studies have suggested that HL N-linked glycans are required for catalytic activity. To directly test this hypothesis, Xenopus laevis oocytes were used to express native rat HL or HL lacking one or both N-linked glycosylation sites. The expressed and secreted native HL had an apparent molecular mass of 53 kDa, consistent with purified rat liver HL. The mutant lacking both glycosylation sites, while poorly secreted, had an apparent molecular mass of 48 kDa, the same size observed for HL after enzymatic removal of N-linked oligosaccharides. Mutants lacking one of the two sites were intermediate in size and showed reduced secretion. Each of these expressed and secreted proteins had full catalytic activity that was inhibited by antisera to rat HL. Thus, N-linked glycosylation of rat HL, while important to lipase secretion, is not essential for the expression of lipase activity.  相似文献   

9.
Human renin plays an important role in blood pressure homeostasis and is secreted in a regulated manner from the juxtaglomerular apparatus of the kidney in response to various physiological stimuli. Many aspects of the regulated release of renin (including accurate processing of prorenin to renin, subcellular targeting of renin to dense secretory granules, and regulated release of active renin) can be reproduced in mouse pituitary AtT-20 cells transfected with a human preprorenin expression vector. Using protein engineering, we have attempted to define the roles of various structures in prorenin that affect its production and trafficking to dense core secretory granules, resulting in its activation and regulated secretion. Replacement of the native signal peptide of human preprorenin with that of a constitutively secreted protein (immunoglobulin M) had no apparent effect on either the constitutive secretion of prorenin or the regulated secretion of active renin in transfected AtT-20 cells. Removal of the pro segment resulted in a marked reduction in total renin secretion, but did not prevent renin from entering the regulated secretory pathway. Single or combined mutations in the two glycosylation sites of human renin did not prevent its regulated secretion; however, the complete elimination of glycosylation resulted in a significant increase in the ratio of renin/prorenin secreted by the transfected cells. Thus, these results suggest that 1) at least one of the sequences that target human renin to dense secretory granules lies within the protein moiety of active renin; 2) the presence of the pro segment is important for efficient prorenin and renin production; and 3) glycosylation can quantitatively affect the proportion of active renin secreted.  相似文献   

10.
The 57,000- to 65,000-dalton (Da) Marek's disease herpesvirus A (MDHV-A) antigen glycoprotein (gp57-65) has a 47,000-Da unglycosylated precursor polypeptide (pr47), as determined by immunological detection after cell-free translation of infected-cell mRNA. Cleavage of its signal peptide yielded a 44,000-Da precursor polypeptide molecule (pr44), detected both in vivo after tunicamycin inhibition of glycosylation and in vitro after dog pancreas microsome processing of pr47. High-resolution pulse-chase studies showed that pr44 was quickly glycosylated (within 1 min) to nearly full size, a rapid processing time consistent with a cotranslational mode of glycosylation. This major glycosylation intermediate was further modified 6 to 30 min postsynthesis (including the addition of sialic acid), and mature MDHV-A was secreted 30 to 120 min postsynthesis. Limited apparent secretion of pr44 occurred only in the first minute postsynthesis, in contrast to the later secretion of most of the MDHV-A polypeptide as the fully glycosylated form described above. In addition, in the presence of tunicamycin a small fraction of the newly synthesized MDHV-A protein appeared as a secreted, partially glycosylated, heterogeneously sized precursor larger than pr44. pr44 constituted the major fraction of the new MDHV-A made in the presence of the inhibitor but the precursor was smaller than mature MDHV-A. These data indicate that there is a minor glycosylation pathway not sensitive to tunicamycin and that "normal" glycosylation is not necessary for secretion. Collectively, the data demonstrate that the rapid release of most of the fully glycosylated form of MHDV-A from the cell shortly after synthesis is true secretion in a well-regulated and precisely programmed way and not the result of cell death and disruption.  相似文献   

11.
Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a beta-glucuronidase reporter enzyme that is inhibited by N-linked glycosylation specific to the secretory pathway. Treatment of seedlings with tunicamycin inhibits glycosylation, resulting in increased activity of secreted beta-glucuronidase fusions that result from gene trap integration downstream of exons encoding signal peptides. In the 2,059 gene trap lines that we screened, 32 secretion trap expression patterns were identified in a wide variety of tissues including embryos, meristems, and the developing vasculature. Genes disrupted by the secretion traps encode putative extracellular signaling proteins, membrane transport proteins, and novel secreted proteins of unknown function missed by conventional mutagenesis and gene prediction. Secretion traps provide a unique reagent for gene expression studies and can guide the genetic combination of loss of function alleles in related genes.  相似文献   

12.
13.
Rat Oatp1 (Slc21a1) is an organic anion-transporting polypeptide believed to be an anion exchanger. To characterize its mechanism of transport, Oatp1 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. Protein was present at high levels in isolated S. cerevisiae secretory vesicles but had minimal posttranslational modifications and failed to exhibit taurocholate transport activity. Apparent molecular mass (M) of Oatp1 in yeast was similar to that of unmodified protein, approximately 62 kDa, whereas in liver plasma membranes Oatp1 has an M of approximately 85 kDa. To assess whether underglycosylation of Oatp1 in yeast suppressed functional activity, Oatp1 was expressed in Xenopus laevis oocytes with and without tunicamycin, a glycosylation inhibitor. With tunicamycin, M of Oatp1 decreased from approximately 72 to approximately 62 kDa and transport activity was nearly abolished. Mutations to four predicted N-glycosylation sites on Oatp1 (Asn to Asp at positions 62, 124, 135, and 492) revealed a cumulative effect on function of Oatp1, leading to total loss of taurocholate transport activity when all glycosylation sites were removed. M of the quadruple mutant was approximately 62 kDa, confirming that these asparagine residues are sites of glycosylation in Oatp1. Relatively little of the quadruple mutant was able to reach the plasma membrane, and most remained in unidentified intracellular compartments. In contrast, two of the triple mutants tested (N62/124/135D and N124/135/492D) were present in the plasma membrane fraction yet exhibited minimal transport activity. These results demonstrate that both membrane targeting and functional activity of Oatp1 are controlled by the extent of N-glycosylation.  相似文献   

14.
The biosynthesis of human acid ceramidase (hAC) starts with the expression of a single precursor polypeptide of approximately 53-55 kDa, which is subsequently processed to the mature, heterodimeric enzyme (40 + 13 kDa) in the endosomes/lysosomes. Secretion of hAC by either fibroblasts or acid ceramidase cDNA-transfected COS cells is extraordinarily low. Both lysosomal targeting and endocytosis critically depend on a functional mannose 6-phosphate receptor as judged by the following criteria: (i) hAC-precursor secretion by NH(4)Cl-treated fibroblasts and I-cell disease fibroblasts, (ii) inhibition of the formation of mature heterodimeric hAC in NH(4)Cl-treated fibroblasts or in I-cell disease fibroblasts, and (iii) blocked endocytosis of hAC precursor by mannose 6-phosphate receptor-deficient fibroblasts or the addition of mannose 6-phosphate. The influence of the six individual potential N-glycosylation sites of human acid ceramidase on targeting, processing, and catalytic activity was determined by site-directed mutagenesis. Five glycosylation sites (sites 1-5 from the N terminus) are used. The elimination of sites 2, 4, and 6 has no influence on lysosomal processing or enzymatic activity of recombinant ceramidase. The removal of sites 1, 3, and 5 inhibits the formation of the heterodimeric enzyme form. None of the mutant ceramidases gave rise to an increased rate of secretion, suggesting that lysosomal targeting does not depend on one single carbohydrate chain.  相似文献   

15.
The cDNA sequence of a neutral horseradish peroxidase   总被引:2,自引:0,他引:2  
A cDNA clone encoding a horseradish (Armoracia rusticana) peroxidase has been isolated and characterized. The cDNA contains 1378 nucleotides excluding the poly(A) tail and the deduced protein contains 327 amino acids which includes a 28 amino acid leader sequence. The predicted amino acid sequence is nine amino acids shorter than the major isoenzyme belonging to the horseradish peroxidase C group (HRP-C) and the sequence shows 53.7% identity with this isoenzyme. The described clone encodes nine cysteines of which eight correspond well with the cysteines found in HRP-C. Five potential N-glycosylation sites with the general sequence Asn-X-Thr/Ser are present in the deduced sequence. Compared to the earlier described HRP-C this is three glycosylation sites less. The shorter sequence and fewer N-glycosylation sites give the native isoenzyme a molecular weight of several thousands less than the horseradish peroxidase C isoenzymes. Comparison with the net charge value of HRP-C indicates that the described cDNA clone encodes a peroxidase which has either the same or a slightly less basic pI value, depending on whether the encoded protein is N-terminally blocked or not. This excludes the possibility that HRP-n could belong to either the HRP-A, -D or -E groups. The low sequence identity (53.7%) with HRP-C indicates that the described clone does not belong to the HRP-C isoenzyme group and comparison of the total amino acid composition with the HRP-B group does not place the described clone within this isoenzyme group. Our conclusion is that the described cDNA clone encodes a neutral horseradish peroxidase which belongs to a new, not earlier described, horseradish peroxidase group.  相似文献   

16.
Cardiac calsequestrin concentrates in junctional sarcoplasmic reticulum in heart and skeletal muscle cells by an undefined mechanism. During transit through the secretory pathway, it undergoes an as yet uncharacterized glycosylation and acquires phosphate on CK2-sensitive sites. In this study, we have shown that active calsequestrin phosphorylation occurred in nonmuscle cells as well as muscle cells, reflecting a widespread cellular process. To characterize this post-translational modification and resolve individual molecular mass species, we subjected purified calsequestrin to mass spectrometry using electrospray ionization. Mass spectra showed that calsequestrin glycan structure in nonmuscle cells was that expected for an endoplasmic reticulum-localized glycoprotein and showed that each glycoform existed as four mass peaks representing molecules that also had 0-3 phosphorylation sites occupied. In heart, mass peaks indicated carbohydrate modifications characteristic of transit through Golgi compartments. Phosphorylation did not occur on every glycoform present, suggesting a far more complex movement of calsequestrin molecules in heart cells. Significant amounts of calsequestrin contained glycan with only a single mannose residue, indicative of a novel post-endoplasmic reticulum mannosidase activity. In conclusion, glyco- and phosphoforms of calsequestrin chart a complex cellular transport in heart, with calsequestrin following trafficking pathways not present or not accessible to the same molecules in nonmuscle.  相似文献   

17.
A polypeptide with molecular mass of 17 kDa has been partially purified and identified as a major secretory glycoprotein in the rat epididymis. It is phosphorylated and contains high mannose-type oligosaccharides with 5 and 6 mannose units predominantly. These sugar residues are sufficiently exposed in the molecule to be released by endo-beta-N-acetylglucosaminidase H without prior denaturation or protease digestion. Specific binding of the glycoprotein to testicular spermatozoa was demonstrated with Ka 0.2 x 10(9) M-1 and 17,200 sites per cell, while no binding to epididymal spermatozoa was detectable. Direct labeling of surface proteins on cauda epididymis spermatozoa revealed the presence of a major band of 16.2 kDa, which may be equivalent to GP17. The interaction of the epididymal secretory protein with sperm suggests a possible role in the maturation process.  相似文献   

18.
Congenital disorders of glycosylation: genetic model systems lead the way   总被引:11,自引:0,他引:11  
N-linked glycosylation is the most frequent modification of secretory proteins in eukaryotic cells. The highly conserved glycosylation process is initiated in the endoplasmic reticulum (ER), where the Glc(3)Man(9)GlcNAc(2) oligosaccharide is assembled on the lipid carrier dolichylpyrophosphate and then transferred to selected asparagine residues of polypeptide chains. In recent years, several inherited human diseases, congenital disorders of glycosylation (CDG), have been associated with deficiencies in this pathway. The ER-associated glycosylation pathway has been studied in the budding yeast Saccharomyces cerevisiae, and this model system has been invaluable in elucidating the molecular basis of novel types of CDG.  相似文献   

19.
Cyst wall proteins 1 and 2 (CWP1 and CWP2) are major constituents of the giardial cyst wall and are expressed with similar kinetics by encysting trophozoites. In the present study, we were interested to determine if the expression of giardial CWPs as heterologous proteins in a higher eukaryotic cell would result in their trafficking across the secretory pathway, as is the case in encysting trophozoites. Recombinant (r)CWP1 and rPro-CWP2 were detected in the lysate and culture media of transfected HEK-293 cells. We then conducted intracellular localization experiments using confocal microscopy and found that the proteins were trafficked in membrane enclosed vesicles across the secretory pathway and released to the culture medium by transfected HEK-293 cells. We then dissected the rCWP1 and rPro-CWP2 molecules to identify the portion(s) responsible for their secretion and found that the putative N-terminal signal peptide was sufficient for directing the secretion of rCWP1, while both the putative N-terminal signal peptide and the 13kDa C-terminal regions were necessary for the secretion of rPro-CWP2 by transfected HEK-293 cells. Taken together, these results demonstrate the degree of conservation of signal peptide recognition between lower and higher eukaryotes.  相似文献   

20.
D X Zheng  L Dickens  T Y Liu  H L Nakhasi 《Gene》1989,82(2):343-349
A full-length cDNA clone for the 24S subgenomic mRNA of the vaccine strain (HPV77) of rubella virus has been isolated from a cDNA library made from the RNAs of infected cells. Starting from the first Met start codon, the 24S mRNA codes for a precursor protein of 1063 amino acids (aa). This precursor encodes a capsid protein of 300 aa, and two envelope proteins, E1 (481 aa) and E2 (282 aa). Both the E1 and E2 proteins are preceded by a stretch of 21 hydrophobic aa, characteristic of a signal peptide, and each has three putative glycosylation sites in the polypeptide chains. Comparison between the structural proteins of the vaccine and the wild-type (wt; M33) strains of rubella virus, revealed that the E2 protein of the vaccine strain differs, in its apparent Mr, by approx. 3 kDa, from the wt strain. The difference could be due to decreased glycosylation of the vaccine strain E2 protein, as revealed by [3H]mannose incorporation studies. Five single-aa changes in the structural proteins occurred during the attenuation process, one each in the capsid and the E1 protein and three in the E2 protein. The change of Thr-412----Ile in the E2 protein results in the loss of a putative glycosylation site at Asn-410, which offers a plausible explanation for decreased glycosylation of the E2 protein from the vaccine strain of rubella virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号