首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thyroid gland in children is one of the organs that is most sensitive to external exposure to X and gamma rays. However, data on the risk of thyroid cancer in children after exposure to radioactive iodines are sparse. The Chornobyl accident in Ukraine in 1986 led to the exposure of large populations to radioactive iodines, particularly (131)I. This paper describes an ongoing cohort study being conducted in Belarus and Ukraine that includes 25,161 subjects under the age of 18 years in 1986 who are being screened for thyroid diseases every 2 years. Individual thyroid doses are being estimated for all study subjects based on measurement of the radioactivity of the thyroid gland made in 1986 together with a radioecological model and interview data. Approximately 100 histologically confirmed thyroid cancers were detected as a consequence of the first round of screening. The data will enable fitting appropriate dose-response models, which are important in both radiation epidemiology and public health for prediction of risks from exposure to radioactive iodines from medical sources and any future nuclear accidents. Plans are to continue to follow-up the cohort for at least three screening cycles, which will lead to more precise estimates of risk.  相似文献   

2.
This article provides an overview of the on-going molecular epidemiology studies among atomic-bomb survivors conducted at the Radiation Effects Research Foundation in Japan. The focus is on: (a) inter-individual variations in sensitivity to radiation-induced somatic mutations (glycophorin A (GPA) mutations) and their potential relevance to differences in susceptibility to radiation-related cancers and (b) the role of specific mutations/rearrangements in radiation-induced thyroid and colorectal cancers. The glycophorin A mutant fractions showed large differences between the survivors at each of the estimated bone marrow doses. Of note is the finding at doses>or=1 Gy; that the slope of the mutant fraction was significantly higher in the 'cancer group' than in the 'non-cancer group'. This study provided the basis for validating the use of gammaH2AX and reticulocyte micronucleus assays for evaluating radiosensitivity differences and genetic instability, respectively, in our studies in the coming years. Preliminary results from our molecular oncology studies on adult-onset papillary thyroid cancer provide evidence for the induction of RET/PTC rearrangements and BRAF point mutation (both known to be early stage events in adult-onset papillary thyroid cancer) but with a difference: cases associated with the rearrangements were more frequent at high doses, and developed sooner than those with BRAF mutation. In the case of colorectal cancer, the results suggest that radiation exposure might influence microsatellite instability (MSI) status through MSI-related epigenetic and genetic alterations-processes that might occur in the early stage of colorectal carcinogenesis.  相似文献   

3.
Risk of thyroid cancer among Chernobyl emergency workers of Russia   总被引:1,自引:1,他引:0  
The presented paper deals with the thyroid cancer incidence in selected cohorts of emergency workers of Russia. In 1986-2003, a total of 87 cases of thyroid cancer were observed. Based on these data, a statistically significant increase in thyroid cancer incidence was found above the reference level for the male population of Russia, corresponding to a standardized incidence rate (SIR) of SIR = 3.47 [95% confidence interval (CI): 2.80; 4.25]. The highest incidence rate (SIR = 6.62, 95% CI: 4.63; 9.09) was shown for those emergency workers who took part in the early recovery operations in April-July 1986. The estimated SIR value increases to 7.97 (95% CI: 5.24; 11.52) after allowing for a 10 years latent period of Chernobyl-related thyroid cancers. These results indicate that the exposure to incorporated (131)I was the major risk factor of thyroid cancer among Chernobyl emergency workers. No statistically significant relationship was found for the thyroid cancer incidence and external radiation dose.  相似文献   

4.
The accident at the Chernobyl nuclear power plant took place more than 20 years ago, on April 26th 1986, but its effects are still being felt, and its consequences influence the debate on nuclear power generation. The consequences for those working to contain the accident resembled those after the atomic bomb, 28 died from acute radiation sickness, and a further approximately 20 have died from the consequences of whole body radiation. The consequences for the millions exposed to high levels of fallout were quite different from those after the atomic bomb, and the talk will consider particularly the dramatic rise in thyroid carcinoma; currently estimated as about 4 000 cases. Fortunately only a small proportion has died from the disease. Initial studies concentrated on validating the diagnoses, later studies have shown a link between the molecular and morphologic pathology, the latent period and the aggressiveness of the tumours. These points will be reviewed, together with the link between radiation and thyroid carcinogenesis, and the possible future effects. The thyroid cancers are of particular significance because they represent the largest number of human tumours of one type due to one cause on one date that has ever occurred.  相似文献   

5.
In the event of a nuclear reactor accident, the major public health risk will likely result from the release and dispersion of volatile radio-iodines. Upon body exposure and food ingestion, these radio-iodines are concentrated in the thyroid, resulting in substantial thyroidal irradiation and accordingly causing thyroid cancers. Stable potassium iodide (KI) effectively blocks thyroid iodine uptake and is thus used in iodide prophylaxis for reactor accidents. The efficiency of KI is directly related to the physiological inhibition of the thyroid function in the presence of high plasma iodide concentrations. This regulation is called the Wolff-Chaikoff effect. However, to be fully effective, KI should be administered shortly before or immediately after radioiodine exposure. If KI is provided only several hours after exposure, it will elicit the opposite effect e.g. lead to an increase in the thyroid irradiation dose. To date, clear evaluation of the benefit and the potential toxicity of KI administration remain difficult, and additional data are needed. We outline in this review the molecular characterization of KI-induced regulation of the thyroid function. Significant advances in the knowledge of the iodide transport mechanisms and thyroid physiology have been made. Recently developed molecular tools should help clarify iodide metabolism and the Wolff-Chaikoff effect. The major goals are clarifying the factors which increase thyroid cancer risk after a reactor accident and improving the KI administration protocol. These will ultimately lead to the development of novel strategies to decrease thyroid irradiation after radio-iodine exposure.  相似文献   

6.
Cancer induction is generally considered to be the most important somatic effect of low doses of ionizing radiation. It is therefore of great concern to assess the quantitative cancer risk of exposure to radiations of different quality and to obtain information on the dose-response relationships for carcinogenesis. Tissues in the human with a high sensitivity for cancer induction include the bone marrow, the lung, the thyroid and the breast in women. If the revised dosimetry estimates for the Japanese survivors of the atomic bomb explosions are correct, there is no useful data base left to derive r.b.e. values for human carcinogenesis. As a consequence, it will be necessary to rely on results obtained in biological systems, including experimental animals, for these estimates. With respect to radiation protection, the following aspects of experimental studies on radiation carcinogenesis are of relevance: Assessment of the nature of dose-response relationships. Determination of the relative biological effectiveness of radiations of different quality. Effects of fractionation or protraction of the dose on tumour development. For the analysis of tumour data in animals, specific approaches have to be applied which correct for competing risks. These methods include actuarial estimates, non-parametric models and analytical models. The dose-response curves for radiation-induced cancers in different tissues vary in shape. This is exemplified by studies on myeloid leukaemia in mice and mammary neoplasms in different rat strains. The results on radiation carcinogenesis in animal models clearly indicate that the highest r.b.e. values are observed for neutrons with energies between 0.5 and 1 MeV. On the basis of such results it might be concluded that the maximum quality factor of 10 for neutrons should be increased. Based on current evidence, an increase by a factor of 2 to 3 seems more realistic than a tenfold rise. The diversity of dose-response relationships point to different mechanisms involved in the induction of different tumours in various species and even in different strains of the same species.  相似文献   

7.
The thyroid cancer data of children in the northern regions of the Ukraine after the reactor accident at Chernobyl were combined with thyroid dose measurements in the same regions and analysed using a two- mutation carcinogenesis model. The best fit was obtained for radiation acting as an initiating agent, i.e. on the first mutation of the model. The observed relatively high increase of thyroid cancer incidence after 1990 in children exposed to radiation released after the reactor accident could be ascribed to the high thyroid doses and the relatively low background thyroid cancer incidence in children. The maximum annual incidence is predicted to occur fairly soon after the reactor accident, i.e. about 10 years. For adults, the predicted relative increase of annual thyroid cancers is much lower than for children younger than 20 years. The modelling results are used to derive risk estimates for radiation-induced thyroid cancer. These risk estimates are dependent on age at exposure, follow-up time and the background thyroid cancer incidence. The calculated excess absolute risk for a population of all ages is about one-third of that currently used by ICRP, but for children the calculated absolute risks are about a factor of 3 higher than derived in other epidemiological studies. The model results indicate that the excess absolute radiation risk per unit dose for children is about the same as or a little lower than that for adults. Received: 11 May 1999 / Accepted: 30 December 1999  相似文献   

8.
It has been acknowledged for many years that radiation exposure induces delayed, non-targeted effects in the progeny of the irradiated cell. Evidence is beginning to demonstrate that among these delayed effects of radiation are epigenetic aberrations, including altered DNA methylation. To test the hypothesis that differences in radiation quality affect radiation-induced DNA methylation profiles, normal AG01522 and RKO colon carcinoma cells were exposed to low-LET X rays and protons or high-LET iron ions. DNA methylation was then evaluated at delayed times using assays for p16 and MGMT promoter, LINE-1 and alu repeat element, and global methylation. The results of these experiments demonstrated radiation-induced changes in repeat element and global DNA methylation patterns at ~20 population doublings postirradiation. Further, radiation-induced changes in repeat element and global DNA methylation were more similar between proton- and iron-ion-irradiated cells than X-irradiated cells, suggesting that radiation quality rather than LET alone affects the radiation-induced epigenetic profile. Since alterations in DNA methylation have also emerged as one of the most consistent molecular alterations in cancer, these data also suggest the possibility that radiation-induced carcinogenic risk might be affected by radiation quality.  相似文献   

9.
The microchromosomes (MICs) in chicken DT40 lymphocytes are usually clustered in the center of the nucleus, whereas the macrochromosomes (MACs) are preferentially located toward the nuclear periphery. This compartmentalized architecture of the nucleus is associated with a low frequency of translocations between MICs and MACs after induction of DNA breaks by a radiation track(s). In contrast, the MICs in chick embryo fibroblasts (CEFs) tend to be located throughout the entire nuclear volume. The resulting side-to-side arrangement of MIC and MAC territories favors radiation-induced MIC/MAC translocations, which occur more frequently in CEF cells than MIC/MIC or MAC/MAC rearrangements. Collectively, our results suggest that preformed physical contacts are a prerequisite for the generation of chromosome rearrangements through recombinational repair of DNA damage. Cell type-specific higher-order nuclear organization may prevent or stimulate the formation of particular chromosome aberrations in pathology and evolution. Ectopic expression of the recombination protein Rad51 can protect cells from radiation-induced translocations. The repair activity of overexpressed Rad51 is more important for cells that are irradiated in S/G(2) phase than for cells in G(1) phase. Evidently, homologous recombination between sister chromatids of a replicated chromosome is more frequent than that between homologous or heterologous chromosomes during G(1) phase.  相似文献   

10.
Amplification of the c-myc oncogene has been detected by Southern blotting in the DNA of radiation-induced skin cancers in the rat. In the current work the localization of oncogene amplification within specific cells in the different cancers and in multiple biopsies of the same cancer was studied by in situ hybridization. The amount of amplification was measured by counting grains on tissue sections hybridized in situ to biotin-labeled human c-myc third exon, rat v-H-ras, and rat v-Ki-ras probes. The in situ estimates of c-myc amplification were generally correlated with previous findings using the Southern blot method, but within each cancer only a fraction of cells exhibited amplification. Multiple biopsies of a squamous carcinoma showed amplification of v-H-ras and c-myc but not v-Ki-ras during tumor growth, but none of these oncogenes were amplified during tumor regression. The c-myc-positive cells were distributed uniformly within the cancers and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc-negative cells. A high [3H]thymidine labeling index was found in irradiated epidermal cells on Day 7 after exposure, and yet no evidence of c-myc oncogene amplification was found in situ. No c-myc amplification was found in unirradiated normal epidermis or in irradiated epidermal cells in the vicinity of radiation-induced cancers. The data indicate that c-myc amplification is cell-specific within radiation-induced carcinomas and does not occur in epidermal cells proliferating in response to radiation exposure.  相似文献   

11.
For a retrospective dose estimation of human exposure to ionising radiation, a partial genome analysis is routinely used to quantify radiation-induced chromosome aberrations. For this purpose, fluorescence in situ hybridisation (FISH) with whole chromosome painting probes for selected chromosomes is usually applied covering about 20% of the whole genome. Since genome-wide screening techniques like spectral karyotyping (SKY) and multiplex FISH (mFISH) have been developed the detection of radiation-induced aberrations within the whole genome has now become feasible. To determine the correspondence between partial and whole genome analysis of radiation-induced chromosome aberrations, they were measured comprehensively in this study using in vitro irradiated blood samples from three donors. We were able to demonstrate that comparable results can be detected with both approaches. However, complex aberrations might be misinterpreted by partial genome analysis. We therefore conclude that whole genome analysis by SKY is useful especially in the high dose range to correct aberration data for complex exchange aberrations.  相似文献   

12.
Intranuclear lipid metabolism modifications in relation to cell proliferation and/or apoptosis were demonstrated in hepatocytes. The aim of this study was to establish whether nuclear lipid metabolites influence cell function in different experimental models using a rat thyroid cell line (FRTL-5) treated with UV-C radiation. After UV-C irradiation cells proliferate and undergo apoptosis in the presence of thyrotropin, are quiescent and resistant to radiation-induced apoptosis in its absence and finally are proapoptotic for nutrition withdrawal. In nuclei purified from proliferating cells, irradiation stimulates neutral-sphingomyelinase activity and inhibits sphingomyelin-synthase, phosphatidylcholine-specific phospholipase C and phosphatidylinositol-specific phospholipase C activity with a consequent increase in the ceramide/diacylglycerol ratio. This effect is marked in proapoptotic cell nuclei and low in quiescent cell nuclei. In conclusion, UV-C radiation induces apoptosis, modifying nuclear lipid metabolism in relation to the physiological state of cells.  相似文献   

13.
The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such understanding is critical in extrapolating databases between cellular response, animal carcinogenesis and human carcinogenesis, and we suggest that the SAO model is a useful tool for such extrapolation.  相似文献   

14.
《Endocrine practice》2023,29(3):221-227
A better understanding of the molecular aberrations prevalent in thyroid cancers had led to significant advances in the management of advanced thyroid cancer. The landscape of thyroid cancer treatment has grown rapidly. Molecular profiling is the key to identify actionable targets for treatment of advanced disease. In the past decade, there have been regulatory approvals of 9 kinase inhibitors or kinase inhibitor combinations. There are now drugs approved for all of the different types of thyroid cancers, including anaplastic thyroid cancer. However, these drugs are not curative and therefore new strategies and treatments continue to be sought.  相似文献   

15.
The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.  相似文献   

16.
Previous surveys of radiation therapy among the Life Span Study (LSS) population at the Radiation Effects Research Foundation (RERF) revealed that 1,670 (1.4%) of the LSS participants received radiation treatments before 1984. The data on therapeutic radiation doses are indispensable for studying the relationship between radiation treatments and subsequent cancer occurrences. In this study, the radiation treatments were reproduced experimentally to determine the scattered radiation doses. The experiments were conducted using a female human phantom and various radiation sources, including a medium-voltage X-ray machine and a (60)Co gamma-ray source. Doses were measured using thermoluminescence dosimetry and ionization chambers. Radiation doses were determined for the salivary glands, thyroid gland, breast, lung, stomach, colon, ovary and active bone marrow. The results have been used for documenting the organ doses received by patients in previous surveys. The contribution of therapeutic irradiation to the occurrence of chromosome aberrations was studied using data on doses to active bone marrow from both radiation treatments and atomic bomb exposures in 26 RERF Adult Health Study participants. The results suggest that radiation treatments contributed to a large part of their frequencies of stable-type chromosome aberrations. The therapeutic radiation doses determined in the present study are available for investigating the effects of therapeutic irradiation on the subsequent primary cancers among atomic bomb survivors who received radiation treatments.  相似文献   

17.
18.
L Ghisolfi  AC Keates  X Hu  DK Lee  CJ Li 《PloS one》2012,7(8):e43628
The cancer stem cell (CSC) model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.  相似文献   

19.
Human promyelocytic leukemia (HL60) cells were irradiated with 10 or 50 Gy of X rays and studied for up to 72 h postirradiation to determine the mode of death and assess changes in the nuclear matrix. After 50 Gy irradiation, cells were found to die early, primarily by apoptosis, while cells irradiated with 10 Gy died predominantly by necrosis. Disassembly of the nuclear lamina and degradation of the nuclear matrix protein lamin B occurred in cells undergoing radiation-induced apoptosis or necrosis. However, using Western blotting and a recently developed flow cytometry assay to detect changes in nuclear matrix protein content, we found that the kinetics and mechanisms of disassembly of the nuclear lamina are different for each mode of cell death. During radiation-induced apoptosis, cleavage and degradation of lamin B to a approximately 28-kDa fragment was detected in most cells within 4-12 h after irradiation. Measurements of dual-labeled apoptotic cells revealed that nonrandom DNA fragmentation was evident prior to or concomitant with breakdown of the nuclear lamina. Disassembly of the nuclear lamina during radiation-induced necrosis occurred much later (between 30-60 h after irradiation), and a different cleavage pattern of lamin B was observed. Degradation of the nuclear lamina was also inhibited in apoptosis-resistant BCL2-overexpressing HL60 cells exposed to 50 Gy until approximately 48 h after irradiation. These data indicate that breakdown of the nuclear matrix may be a common element in radiation-induced apoptosis and necrosis, but that the mechanisms and temporal patterns of breakdown of the nuclear lamina during apoptosis are distinct from those of necrosis.  相似文献   

20.
Gleevec, a selective tyrosine kinase inhibitor, retarded the growth of anaplastic thyroid cancer cell lines in vitro and in vivo through selective inhibition of ABL tyrosine kinase activity. In the present study, we investigated the ability of Gleevec to modulate the in vitro and in vivo radiation response of anaplastic thyroid cancer cells. Cell growth assays, colony formation assays and xenograft models were used to quantify the radiosensitizing effect of Gleevec in cells of the anaplastic thyroid cancer cell lines ARO and FRO. FACS, Western blotting and histochemical techniques were employed to study the mechanisms of radiation response after exposure to Gleevec. Gleevec (7.0 microM) increased the anti-proliferative effect of radiation on the growth ARO and FRO cells in vitro. Clonogenic analysis demonstrated that Gleevec reduced cell survival after irradiation. Gleevec combined with radiation produced an increase in tumor growth inhibition compared to treatment with either modality alone in mice bearing anaplastic thyroid cancer xenografts. The drug suppressed radiation-induced ABL activation and promoted CDKN1A (p21(cip1)) accumulation in irradiated anaplastic thyroid cancer cells. Gleevec had an additional effect on radiation-induced apoptosis in cells of both cell lines and potentiated the induction of terminal growth arrest accompanied by the expression of senescence-associated beta-galactosidase. The antitumor effect of Gleevec is potentiated in adjunctive therapy with radiation not only due to inhibition of proliferative cell growth with transient cell cycle arrest and apoptosis, but also due to the terminal growth arrest associated with senescence, suggesting that tumor cell senescence is a mechanism for tumor targeting therapy in combination with ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号