共查询到20条相似文献,搜索用时 0 毫秒
1.
Rajaniemi TK 《Oecologia》2007,153(1):145-152
The responses of plant roots to nutrient patches in soil may be an important component of competitive ability. In particular,
the scale, precision, and rate of foraging for patchy soil resources may influence competitive ability in heterogeneous soils.
In a target–neighbor experiment in the field, per-individual and per-gram competitive effects were measured for six old-field
species with known root foraging scale, precision, and rate. The presence and number of nutrient patches were also manipulated
in a full factorial design. Number and presence of patches did not influence the outcome of competition. Competitive ability
was not related to total plant size, growth rate, or root:shoot allocation, or to root foraging precision. Per-individual
competitive effects were marginally correlated with root foraging scale (biomass of roots) and root foraging rate (time required
to reach a patch). Therefore, competitive ability was more closely related to ability to quickly fill a soil volume with roots
than to ability to preempt resource-rich patches. 相似文献
2.
We consider the effect of including energy costs on the optimal strategy for animals exploiting a depleting food resource. In the context of central place foraging this leads to the problem of what load size should be brought back to the central place. Two strategies are discussed: (i) maximize gross rate of energy delivery and (ii) maximize net rate of energy delivery. The optimal load size (or optimal patch time) for net maximizers is not always larger than for gross maximizers, as has been claimed. Instead, the difference in optimal load size has the same sign as the difference between metabolic rates of travelling and foraging. We point out that the influence of costs has not always been correctly incorporated in experimental tests of the theory. 相似文献
3.
Powers DR Getsinger PW Tobalske BW Wethington SM Powers SD Warrick DR 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2012,161(2):279-285
Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (Te) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher Te. In rufous hummingbirds (Selasphorus rufus; 3.3 g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at Te > 40 °C was < 40% in most species. During forward flight in S. rufus the proportion of TDH accounted for by REWL was ~ 35% less than for hovering. REWL in hummingbirds is a relatively small component of the water budget compared with other bird species (< 20%) so cutaneous evaporative water loss and dry heat transfer must contribute significantly to thermal balance in hummingbirds. 相似文献
4.
VM Ortega-Jimenez R Dudley 《Proceedings. Biological sciences / The Royal Society》2012,279(1744):3996-4002
Flight in rain represents a greater challenge for smaller animals because the relative effects of water loading and drop impact are greater at reduced scales given the increased ratios of surface area to mass. Nevertheless, it is well known that small volant taxa such as hummingbirds can continue foraging even in extreme precipitation. Here, we evaluated the effect of four rain intensities (i.e. zero, light, moderate and heavy) on the hovering performance of Anna's hummingbirds (Calypte anna) under laboratory conditions. Light-to-moderate rain had only a marginal effect on flight kinematics; wingbeat frequency of individuals in moderate rain was reduced by 7 per cent relative to control conditions. By contrast, birds hovering in heavy rain adopted more horizontal body and tail positions, and also increased wingbeat frequency substantially, while reducing stroke amplitude when compared with control conditions. The ratio between peak forces produced by single drops on a wing and on a solid surface suggests that feathers can absorb associated impact forces by up to approximately 50 per cent. Remarkably, hummingbirds hovered well even under heavy precipitation (i.e. 270 mm h(-1)) with no apparent loss of control, although mechanical power output assuming perfect and zero storage of elastic energy was estimated to be about 9 and 57 per cent higher, respectively, compared with normal hovering. 相似文献
5.
Female mate choice and the benefits of this behavior are criticalaspects of Darwinian sexual selection, but they are seldom documentedbecause it is difficult to identify the male trait(s) that femalesmay be seeking. We conducted experiments with grasshoppers (Melanoplussangutnipes: Orthoptera, Acrididae) to examine this behavior.Males that feed more intensively and select a diet mix thatpermits greater food intake (food intake per body mass per time)in laboratory trials were preferentially selected by females.These better foraging males on average provide greater paternalinvestment (greater spermatophore mass) to the female, whichincreases her reproductive rate (eggs produced per body massper time). However, paternal investment may not entirely explainfemale choice of better foraging males, because these maleswere still selected even if they had their food intake restrictedor had been allowed to recently mate, which reduces spermatophoreproduction. Furthermore, males change their mating strategyin response to female choice and the foraging abilities of surroundingmales. Poorer foraging males attempt forcible copulation ratherthan displaying and allowing female choice. A male will facultativelyswitch between these strategies depending on the foraging abilitiesof the surrounding males. While females attempt to reject forciblecopulation, forcible copulation reduces the frequency with whichfemales successfully copulate with better foraging males. Therefore,males that are less "attractive" to females adopt alternativemating strategies to counter female choice which would excludethem from mating.[Behav Ecol 7: 438444 (1996)] 相似文献
6.
Graham H. Pyke 《Animal behaviour》1981,29(3):889-896
The movements of hummingbirds between inflorescences of scarlet gilia (Ipomopsis aggregata) were studied. These movements exhibited the following patterns: (1) Although the hummingbirds appeared to avoid moving to the previous inflorescence, no significant correlation was found between the directions of successive inter-inflorescence movements. (2) The frequency distribution of inter-inflorescence flight distances was found to be leptokurtic. (3) The hummingbirds were more likely to move to an inflorescence the larger and/or closer it was. (4) The hummingbirds moved to inflorescences of greatest apparent size (i.e. ratio of number of flowers available to distance from present inflorescence) more often than they moved to the largest inflorescence, the closest infloresence, or the inflorescence estimated to yield the greatest rate of energy gain. (5) The frequency distribution of moves to the inflorescence having the ith greatest apparent size is well fitted by a geometric distribution. This is consistent with the hummingbrids choosing the inflorescence of greatest apparent size (excluding the previous inflorescence) from within some scanning sector. These movement patterns are consistent with the expectations of optimal foraging theory only if the hummingbirds cannot or do not determine the directions of possible inflorescences relative to the direction of arrival at the present inflorescence and if they cannot assess independently the sizes and distances of possible inflorescences. 相似文献
7.
Christopher James Clark Robert Dudley 《Proceedings. Biological sciences / The Royal Society》2009,276(1664):2109-2115
The elongated tails adorning many male birds have traditionally been thought to degrade flight performance by increasing body drag. However, aerodynamic interactions between the body and tail can be substantial in some contexts, and a short tail may actually reduce rather than increase overall drag. To test how tail length affects flight performance, we manipulated the tails of Anna''s hummingbirds (Calypte anna) by increasing their length with the greatly elongated tail streamers of the red-billed streamertail (Trochilus polytmus) and reducing their length by removing first the rectrices and then the entire tail (i.e. all rectrices and tail covert feathers). Flight performance was measured in a wind tunnel by measuring (i) the maximum forward speed at which the birds could fly and (ii) the metabolic cost of flight while flying at airspeeds from 0 to 14 m s−1. We found a significant interaction effect between tail treatment and airspeed: an elongated tail increased the metabolic cost of flight by up to 11 per cent, and this effect was strongest at higher flight speeds. Maximum flight speed was concomitantly reduced by 3.4 per cent. Also, removing the entire tail decreased maximum flight speed by 2 per cent, suggesting beneficial aerodynamic effects for tails of normal length. The effects of elongation are thus subtle and airspeed-specific, suggesting that diversity in avian tail morphology is associated with only modest flight costs. 相似文献
8.
A number of species have the ability to autotomize limbs voluntarily, but animals that have lost limbs often face substantial costs. We examined the frequency of leg loss and its effects on competitive ability and development in the spider Holocnemus pluchei (Araneae: Pholcidae), a family of spiders known for its readiness to autotomize legs. Leg loss was common in field populations, with 7.5% of all surveyed spiders missing at least one leg, most commonly one of the anterior pair. More spiders were missing multiple legs than expected by chance, suggesting that leg loss events are not independent. Large adult spiders were missing legs more frequently than were small spiders. The competitive ability of injured males was tested in three contexts. In the field, no effect of leg loss was found on the ability of spiders to remain in webs into which they were introduced. In the laboratory, no effect of leg loss was found on the ability to fight with a single opponent over a prey, except that injured spiders were more likely to lose high-intensity fights. There was no difference between intact and injured males in their ability to compete with three females for limited prey. Leg loss significantly affected development time. The moult interval during the instar in which the injury occurred increased by approximately 15%. However, the growth rate for injured spiders was slightly but not significantly faster in the instar following leg loss, and total development time of the two instars together did not differ significantly between treatments. No spider showed any signs of regeneration. We conclude that, although there were some statistically significant differences between intact and injured males, these are unlikely to have major impacts on fitness, in contrast to findings in other species. Copyright 1999 The Association for the Study of Animal Behaviour. 相似文献
9.
A central point in life history theory is that parental investment in current reproduction should be balanced by the costs
in terms of residual reproductive value. Long-lived seabirds are considered fixed investors, that is, parents fix a specific
level of investment in their current reproduction independent to the breeding requirements. We tested this hypothesis analysing
the consequences of an experimental increase in flying costs on the foraging ecology, body condition and chick condition in
Cory’s shearwaters Calonectris diomedea. We treated 28 pairs by reducing the wing surface in one partner and compared them with 14 control pairs. We monitored mass
changes and incubation shifts and tracked 19 foraging trips per group using geolocators. Furthermore, we took blood samples
at laying, hatching and chick-rearing to analyse the nutritional condition, haematology, muscle damage and stable isotopes.
Eighty-day-old chicks were measured, blood sampled and challenged with PHA immune assay. In addition, we analysed the effects
of handicap on the adults at the subsequent breeding season. During incubation, handicapped birds showed a greater foraging
effort than control birds, as indicated by greater foraging distances and longer periods of foraging, covering larger areas.
Eighty-day-old chicks reared by treated pairs were smaller and lighter and showed a lower immunity than those reared by control
pairs. However, oxygen demands, nutritional condition and stable isotopes did not differ between control and handicapped birds.
Although handicapped birds had to increase their foraging effort, they maintained physical condition by reducing parental
investment and transferred the experimentally increased costs to their partners and the chick. This result supports the fixed
investment hypothesis and is consistent with life history theory. 相似文献
10.
GRAHAM H. PYKE 《Austral ecology》1980,5(4):343-369
The foraging behaviour of Australian honeyeaters is reviewed in terms of diet, foraging selectivity, foraging flight mode, quality and quantity of nectar encountered per flower, flower densities encountered and effect of predation. At the same time comparisons are made between honeyeaters and hummingbirds. These two groups of birds are superficially similar. Both feed on nectar and insects. Both tend to have long curved bills and tongues adapted for removal of nectar from flowers. Both tend to feed at long, red flowers. However, on close inspection, honeyeaters and hummingbirds are quite dissimilar. For example, many honeyeaters include fruit in their diets. Hummingbirds almost never eat fruit. Honeyeaters appear to be considerably less nectarivorous and more insectivorous than hummingbirds. Honeyeaters are, for the most part, larger than hummingbirds and they usually perch while feeding whereas hummingbirds usually hover. Honeyeaters but not hummingbirds often flock while feeding. Predation appears to be considerably more important for honeyeaters than for hummingbirds. Territorial defense of flowers seems common in hummingbirds but uncommon in honeyeaters. These differences are discussed in detail and explanations are offered for them wherever possible. 相似文献
11.
Summary A comparative study of seasonal food hoarding activity and tactile discriminatory ability in four species of heteromyid rodents (Dipodomys panamintinus, D. merriami, Perognathus longimembris, and P. formosus) was conducted in laboratory test arenas. Animals were tested individually to determine their treatment of seed (white millet) and seed mimics (glass beads and gravel) offered as food. In general, all animals showed low levels of millet hoarding activity during winter months with higher levels in fall and spring. Observations revealed that all species manipulated (with the forepaws) each potential food item prior to eating, pouching, or rejecting it. These tactile cues appear to surpass visual and olfactory cues as critical factors in distinguishing between food and food mimics. Pocket mice (Perognathus) showed high levels of tactile discriminatory ability which may serve as the mechanism by which they achieve high foraging efficiency in nature when filter-feeding for widely dispersed seed resources. Kangaroo rats (Dipodomys), on the other hand, are less adept at distinguishing between food and very similar non-food items. The fact that, in nature, kangaroo rats depend heavily on clumped food resources may obviate the need for highly efficient tactile discriminatory abilities. 相似文献
12.
Abstract Wingstroke frequency, morphometries and thoracic temperatures of freely foraging bumblebees were examined in the field at ambient temperatures varying from 10 to 29o C. Frequency was strongly correlated with morphometric parameters, particularly wing length, but was not correlated with either ambient or thoracic temperature. Magnitudes and scaling of frequency of foraging bees were comparable to values obtained for bees hovering in a closed chamber. These data indicate that frequency is primarily determined by morphometric characteristics which determine lift requirements and do not support the hypothesis that frequency is varied in response to environmental conditions as a means of in-flight thermoregulation. 相似文献
13.
14.
J A Beecham 《Bio Systems》2001,61(1):55-68
A model was developed to explain one mechanism whereby differential optimal foraging strategies can occur between species as a result of selection for competition avoidance. This is the primary requirement for niche differentiation to evolve without a difference in the underlying foraging ability or morphology. The model used an individual-based patch choice mechanism, whereby herbivores move from patch to patch seeking food with the highest nutrient intake characteristics. The choice of patch was governed by a parameter, mu, which determined to what extent information in the landscape at different distances from the herbivore was used by it to make foraging decisions. A genetic algorithm was used to optimise the value, mu, in a complex landscape. The value of mu quickly converged to a single value with stabilising selection occurring when there was only a single species foraging. When there was a competing species with a fixed value of mu, the value of mu evolved to be above or below the mean for the single species mean depending on whether the value of mu for the competitor was below, or above the single-species mean, respectively. This was indicative of niche segregation. However mu tended to vary unstably over time when allowed to vary simultaneously in both species, although there was evidence for interaction between the two values. These results indicate that there can be a competitive advantage in choosing a cognitive strategy that is complementary to that used by other species. 相似文献
15.
16.
17.
Predicting group size in primates: foraging costs and predation risks 总被引:17,自引:2,他引:17
We present a direct test of the long-standing hypothesis thatfood competition limits primate group size. Group size is acritical social variable because it constrains most other aspectsof social organization. We develop a simple population-specificindex of indirect feeding competition based on daily foragingcosts. This index explains nearly two-thirds of between-populationvariation in mean group sizes of mostly fruit-eating (but notof mostly leaf-eating) primates. Group size is also significantlyrelated to body size and terrestriality (or use of open country),which are suspected correlates of predation risk, although feedingcompetition remains an important predictor of group size evenwhen these correlates are controlled. Phylogeny also appearsto be important: the differences between observed mean populationgroup sizes and those predicted using ecological factors aremost positive for the Old World monkeys and most negative forthe lemuroids in our sample. The weak relationship between groupsize and feeding competition found for folivorous species maybe explained either by the energetic constraints of a leafydiet or by limits to group size imposed by infanticide as ahabitual male reproductive strategy. 相似文献
18.
Most terrestrial animals face the challenge of having to conserve water in a desiccating environment. Not surprisingly, the ability to produce concentrated urine has been relatively well studied in birds. Nectar-feeding birds are unusual among terrestrial animals in that they often ingest and excrete prodigious water volumes to obtain adequate energy. Thus, they confront the unusual challenge of having to conserve electrolytes. The diluting abilities of birds and the renal mechanisms that may correlate with them have been relatively neglected. To elucidate diluting and concentrating abilities in nectar-feeding birds, we fed rufous hummingbirds Selasphorus rufus an electrolyte-free nectar and a nectar containing a range of NaCl concentrations. Hummingbirds had a spectacular (and possibly unique) diluting ability: when fed on electrolyte-free food they produced excreta containing less than 0.5 mM l−1 each of sodium and potassium. Hummingbirds also had a poor concentrating ability, retaining sodium and chloride when their food (0.632 M l−1 sucrose) contained more than 35 mM l−1 of NaCl. The kidneys of hummingbirds do not appear to be suited for concentrating urine, and possibly contain structural features that give them a unique diluting ability compared with those of birds that do not feed on nectar. 相似文献
19.
D. Vleck 《Oecologia》1981,49(3):391-396
Summary A model for calculating the energy cost of burrowing by fossorial rodents is presented and used to examine the energetics of foraging by burrowing. The pocket gopher Thomomys bottae (Rodentia: Geomyidae) digs burrows for access to food. Feeding tunnels of Thomomys are broken into segments by laterals to the surface that are used to dispose of excavated soil. Energy cost of burrowing depends on both soil type and on burrow structure, defined by the length of burrow segments, angle of ascent of laterals, depth of feeding tunnels, and burrow diameter. In a desert scrub habitat, Thomomys adjust burrow segment length to minimize cost of burrowing. Observed segment lengths (mean=1.33 m) closely approximate the minimum-cost segment length of 1.22 m. Minimizing energy expended per meter of tunnel constructed maximizes efficiency of foraging by burrowing in the desert scrub. Burrow diameter and cost of burrowing increase with body size, while benefits do not, so foraging by burrowing becomes less enconomical as body size increases. Maximum possible body size of fossorial mammals depends on habitat productivity and energy cost of burrowing in local soils. 相似文献