首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anorexia of aging syndrome in humans is characterized by spontaneous body weight loss reflecting diminished food intake. We reported previously that old rats undergoing a similar phenomenon of progressive weight loss (i.e., senescent rats) also display altered feeding behavior, including reduced meal size and duration. Here, we tested the hypothesis that blunted responsiveness to neuropeptide Y (NPY), a feeding stimulant, occurs concurrently with senescence-associated anorexia/hypophagia. Young (8 mo old, n = 9) and old (24-30 mo old, n = 11) male Fischer 344 rats received intracerebroventricular NPY or artificial cerbrospinal fluid injections. In response to a maximum effective NPY dose (10 microg), the net increase in size of the first meal after injection was similar in old weight-stable (presenescent) and young rats (10.85 +/- 1.73 and 12.63 +/- 2.52 g/kg body wt (0.67), respectively). In contrast, senescent rats that had spontaneously lost approximately 10% of body weight had significantly lower net increases at their first post-NPY meal (1.33 +/- 0.33 g/kg body wt (0.67)) than before they began losing weight. Thus altered feeding responses to NPY occur in aging rats concomitantly with spontaneous decrements in food intake and body weight near the end of life.  相似文献   

2.
Many mammals experience spontaneous declines in their food intake and body weight near the end of life, a stage we refer to as senescence. We have previously demonstrated that senescent rats have blunted food intake responses to intracerebroventricular injections of neuropeptide Y (NPY). In the present study, we tested the hypothesis that responsiveness to GABA, a putative potentiator of NPY's effect, is also diminished. Young and old male F344 rats received injections of NPY, muscimol, (MUS, a GABA-A receptor agonist), combinations of these two agents, and vehicle [artificial cerebrospinal fluid (aCSF)] into the hypothalamic paraventricular nucleus (PVN). Both young and old presenescent rats increased their food intake in response to NPY, MUS, and the combination of the two (in comparison to injections of aCSF). The combination treatment was generally more effective than either NPY or MUS alone. These data are consistent with suggestions that both NPY and GABA play a role in the regulation of feeding behavior. Senescent rats exhibited an attenuated NPY-induced food intake, no increase in response to MUS, and a response to NPY + MUS that was no larger than that of NPY alone. We conclude that PVN injections of GABA, as well as NPY, are less effective in stimulating feeding in senescent rats and suggest that alterations in their signaling pathways play a role in the involuntary feeding decrease seen near the end of life.  相似文献   

3.
Available data on the effect of neuropeptide Y (NPY) on insulin release are conflicting and little data exist regarding the effect of NPY on glucagon secretion. The purpose of the present study, therefore, was to characterize the direct effect of NPY on the release of these pancreatic hormones and to examine the role of glucose on these interactions. Using a perifused mouse islet system, we found that NPY suppressed both basal and glucose-stimulated insulin secretion. Thus, basal insulin release assessed as mean integrated area under the curve/20 min (AUC/20 min) decreased from 1446 +/- 143 pg to 651 +/- 112 pg (P less than 0.05) with the addition of 2 x 10(-8) M NPY and the AUC/20 min for glucose stimulated insulin output decreased from 1973 +/- 248 pg to 1426 +/- 199 pg (P less than 0.05). In both cases, this inhibitory effect was followed after removing NPY by a stimulation of insulin secretion which was typical of a 'rebound off-response'. In contrast, NPY exerted a stimulatory effect on basal glucagon release and significantly reversed the suppressive effect of high glucose on glucagon output. The basal glucagon AUC/20 min increased from 212 +/- 103 pg to 579 +/- 316 pg (P less than 0.05), while glucagon secretion in the presence of 27.7 mM glucose increased from 75 +/- 26 pg to 255 +/- 28 pg (P less than 0.01). In conclusion, we have shown that the direct effect of NPY on the endocrine pancreas is to suppress insulin but stimulate glucagon secretion. These data are compatible with a role for NPY in the regulation of pancreatic hormone output.  相似文献   

4.
Neuropeptide Y (NPY) is a vasoconstrictor present in the sympatho-adrenomedullary system and may be co-released with norepinephrine (NE) and epinephrine (EPI) during sympathetic activation. We studied plasma NPY-immunoreactivity (-ir, radioimmunoassay) and catecholamine (radioenzymatic) responses during two acute stress paradigms that differ in character, intensity, and duration. The intermittent stress of footshock (0.75 and 1.5 mA, 0.5 sec duration, at 5-sec intervals, for 5 min) evoked intensity-dependent immediate increments in plasma NE and EPI, and a delayed NPY-ir response (+0.6 +/- 0.1 pmol/ml). Prolonged (60 min) immobilization caused greater increases in plasma NE and EPI levels and no changes in plasma NPY-ir until the end of the stress session (+0.3 +/- 0.1 pmol/ml). Plasma NPY-ir responses correlated with those of NE but not with EPI suggesting a sympathetic origin for the release of the peptide. Relatively greater NPY-ir responses to footshock than to immobilization may be consistent with a preferential release of the peptide by a bursting but not continuous mode of sympathetic activation. However, it may also be due to a differential activation of the sympathetic nerves and adrenal medulla by these two stress situations.  相似文献   

5.
Neuropeptide Y (NPY) is a well-characterized neuromodulator in the central nervous system, primarily implicated in the regulation of feeding. NPY, orexins, and ghrelin form a hypothalamic food intake regulatory circuit. Orexin and ghrelin are also implicated in sleep-wake regulation. In the present experiments, we studied the sleep-modulating effects of central administration of NPY in rats. Rats received intracerebroventricular injection of physiological saline or three different doses of NPY (0.4, 2, and 10 microg in a volume of 4 microl) at light onset. Another group of rats received bilateral microinjection of saline or 2 microg NPY in the lateral hypothalamus in a volume of 0.2 microl. Sleep-wake activity and motor activity were recorded for 23 h. Food intake after the control and treatment injections was also measured on separate days. Intracerebroventricular and lateral hypothalamic administration of NPY suppressed non-rapid-eye-movement sleep and rapid-eye-movement sleep in rats during the first hour after the injection and also induced changes in electroencephalogram delta power spectra. NPY stimulated food intake in the first hour after both routes of administration. Data are consistent with the hypothesis that NPY has a role in the integration of feeding, metabolism, and sleep regulation.  相似文献   

6.
In patients with a variety of illnesses, serum concentrations of T3 decrease without giving rise to elevated serum levels of TSH, a phenomenon known as the sick euthyroid syndrome or nonthyroidal illness (NTI). Our previous studies in postmortem brain material showed decreased thyrotropin-releasing hormone (TRH) messenger RNA (mRNA) in the paraventricular nucleus (PVN) of patients with NTI, suggesting a role for TRH cells in the persistence of low TSH levels in NTI.In the present study, we hypothesized that changes in neuropeptide Y (NPY) input from the infundibular nucleus (IFN) to TRH cells in the PVN might be a determinant of decreased TRH expression in NTI. We investigated the hypothalamus of nine patients whose endocrine status had been assessed in a serum sample taken less than 24h before death and we examined NPY expression in the IFN by means of immunocytochemistry and mRNA in situ hybridization using an image analysis system. There was a negative correlation (r = -0.88; p = 0.01) between serum leptin concentrations and total NPY mRNA in the IFN. The total amount of NPY immunoreactivity in the IFN correlated with total NPY mRNA (r = 0.69; p = 0.04). In contrast to the situation in food-deprived rodents, total NPY immunoreactivity in the IFN showed a positive correlation with total TRH mRNA in the PVN (r = 0.77; p = 0.02). The results suggest a role for decreased NPY input from the IFN in the resetting of thyroid hormone feedback on hypothalamic TRH cells in NTI.  相似文献   

7.
It has been shown that centrally administered neuropeptide Y (NPY) delays gastric emptying. To determine the receptor subtypes of NPY mediating the inhibitory effects on gastric emptying, effects of intracerebroventricular injection of NPY, [Leu31,Pro34]NPY (a Y1 agonist) and NPY-(3-36) (a Y2 agonist) on solid gastric emptying and postprandial antropyloric motility were studied in conscious rats. Intracerebroventricular injection of NPY and NPY-(3-36), but not [Leu31,Pro34] NPY, delayed solid gastric emptying in a dose-dependent manner (0.03-3 nmol). After the feeding (40 min), contractions with low frequency and high amplitude of the antrum were frequently observed, and the peak contraction of the antrum occurred most often 3-6 s before the peak contraction of the pylorus. Intracerebroventricular injection of NPY and NPY-(3-36) (3 nmol), but not [Leu31,Pro34]NPY, significantly reduced antral contractions and the number of antropyloric coordination events. It is suggested that centrally administered NPY impairs postprandial antral contractions and antropyloric coordination via Y2 receptors, resulting in delayed gastric emptying.  相似文献   

8.
We investigated the effect of repetitive postnatal (2-7 days) intracerebroventricular administration of neuropeptide Y (NPY) on food intake and body weight gain in the 3- to 120-day-old Sprague-Dawley rats. NPY caused a 32% transient increase in body weight gain with elevated circulating insulin concentrations within 24 h. This early intervention led to the persistence of hyperinsulinemia and relative hyperleptinemia with euglycemia in the 120-day-old female alone. This perturbation was associated with 50% suppression in adult female hypothalamic NPY concentrations and a 50-85% decline in NPY immunoreactivity in the paraventricular and arcuate nuclei. This change was paralleled by a approximately 20% decline in food intake and body weight gain at 60 and 120 days. However, when exogenous NPY was stereotaxically reinjected into the paraventricular nucleus of the approximately 120-day-old adult females who were pretreated with NPY postnatally, an increase in food intake and body weight gain was noted, attesting to no disruption in the NPY end-organ responsivity. We conclude that postnatal intracerebroventricular NPY has long-lasting effects that predetermine the resultant adult phenotype in a sex-specific manner.  相似文献   

9.
Previously we reported that the heart norepinephrine concentration was markedly increased in diabetic rats. To further study the relationship between a disturbance in the autonomic nervous system and catecholamine metabolism in diabetes mellitus, the plasma catecholamine response to stress and catecholamine concentration of heart and adrenals were measured. Wistar male rats were made diabetic by streptozotocin and kept for 13 weeks. A silicon catheter was placed in the superior V. cava 1 week prior to the experiment. Insulin was injected subcutaneously for 3 days once daily. After an overnight fast and without anesthesia, 1 ml of blood, a control sample, was obtained and then the animals were exsanguinated. The blood was mixed with 1 mM EGTA at a final concentration and centrifuged. The tissue was homogenized with 0.4 N perchloric acid containing 1 mM EGTA and centrifuged at 10,000 x g for 20 minutes. Catecholamines were determined by high performance liquid chromatography. Normal rats responded to blood withdrawal stress, and plasma catecholamines were markedly increased, but almost no increase or an actual decrease was observed in diabetic rats. These abnormal responses were improved by insulin treatment. Heart norepinephrine was increased significantly in the diabetic rats compared with the control rats and was reduced significantly by insulin injections. Adrenal epinephrine was also significantly increased in the diabetic rats compared with the control rats, but was not significantly reduced by insulin. These result suggest a possible disturbance of catecholamine secretion in the diabetic rats.  相似文献   

10.
探讨神经肽Y(neruopride Y, NPY) 在SD大鼠中脑导水管周围灰质 (periaqueductal grey, PAG) 对伤害性刺激反应的作用.应用热板和机械压力实验法,以大鼠后爪缩爪瓜潜伏期(paw withdrawal latency, PWL) 为痕阈指标, 观察PAG 内微量注射NPY对PWLs的影响.PAG内注射 0.05、0.1、 0.2 nmol NPY 均显著地增加慢性神经痛大鼠的双侧PWLs, 且呈量效关系.NPY引起的PWLs增加可被Y1受体拮抗剂和阿片剂所阻断.结果提示,在大鼠PAG 微量注射NPY可产生明显的镇痛作用.  相似文献   

11.
Wang JZ 《生理学报》2004,56(1):79-82
探讨神经肽Y(neuropeptide Y,NPY)在SD大鼠中脑导水管周围灰质(periaqueductal grey,PAG)对伤害性刺激反应的作用。应用热板和机械压力实验法,以大鼠后爪缩爪反应潜伏期(paw withdrawal latency,PWL)为痛阈指标。观察PAG内微量注射NPY对PWLS的影响。PAG内注射0.05、0.1、0.2nmol NPY均显著地增加慢性神经痛大鼠的双侧PWLS,且呈量效关系。NPY引起的PWLs增加可被Y1受体拮抗剂和阿片受体拮抗剂所阻断。结果提示,在大鼠PAG微量注射NPY可产生明显的镇痛作用。  相似文献   

12.
M Jiménez  L Buéno 《Life sciences》1990,47(3):205-211
The effects of NPY on CRF and stress-stimulated cecal motility were investigated by electromyography in rats. Intracerebroventricular (ICV) injection of NPY at 300 ng/kg significantly reduced the frequency of spike burst during the first 15 minutes after its administration while no effect was observed at a lower dose (150 ng/kg). Exposure to mental stress (MS) increased significantly (p less than 0.01) during 45 minutes, the frequency of cecal spike bursts. NPY (300 ng/kg) injected ICV, 30 minutes prior to MS periods abolished the excitatory effect induced by stress. The frequency of cecal spike bursts was also increased during the first 15-minutes following ICV injection of CRF (300 ng/kg). Prior (5 min) ICV administration of NPY (150 ng/kg) abolished the stimulatory effect of CRF on cecal motility. It is concluded that central administration of NPY suppresses the stress-induced cecal motor response probably by inhibiting the pathways involved in CRF mediation of these effects.  相似文献   

13.
14.
Orexin A and neuropeptide Y that are known to induce a feeding response when applied centrally, in the present studies also caused hypothermia. Neuropeptide Y elicited hypothermia by depressing metabolic rate (without affecting heat loss mechanisms), while orexin A acted through enhancing peripheral heat loss (without affecting metabolic rate). Neither peptide induced coordinated thermoregulatory changes, both of them appeared to influence thermoregulation via different effector mechanisms.  相似文献   

15.
Hyperphagia followed both central neuropeptide Y (NPY) administration and the presumed increase of endogenous NPY activity after food deprivation. NPY induced greater hyperphagia in cold-adapted than non-adapted rats; fasting of comparable severity caused similar hyperphagia in the two groups. NPY-receptor-antagonist D-Tyr(27,36), D-Thr32-NPY(27,36) or functional NPY-antagonist D-myo-inositol-1,2,6-trisphosphate attenuated the hyperphagic effect of both NPY and fasting in non-adapted rats. However, while completely preventing the NPY-hyperphagia, they did not influence the fasting-induced hyperphagia in cold-adapted rats. With cold-adaptation the sensitivity to NPY and to its antagonists increases, but the hypothalamic NPY loses from its fundamental role in the regulation of food intake, and the hyperphagia seen in cold-adaptation may need some other explanation.  相似文献   

16.
The feeding response to intracerebroventricular injection of neuropeptide Y or to starvation is greater in cold-adapted than in non-adapted rats, suggesting that with cold-adaptation the central sensitivity to this peptide is increased. Hypometabolism and hypothermia (which usually follow the administration of neuropeptide Y) cannot, however, be demonstrated in the course of cold-adaptation per se.  相似文献   

17.
Kainate-induced epilepsy has been shown to be associated with increased levels of neuropeptide Y (NPY) in the rat hippocampus. However, there is no information on how increased levels of this peptide might modulate excitation in kainate-induced epilepsy. In this work, we investigated the modulation of glutamate release by NPY receptors in hippocampal synaptosomes isolated from epileptic rats. In the acute phase of epilepsy, a transient decrease in the efficiency of NPY and selective NPY receptor agonists in inhibiting glutamate release was observed. Moreover, in the chronic epileptic hippocampus, a decrease in the efficiency of NPY and the Y(2) receptor agonist, NPY13-36, was also found. Simultaneously, we observed that the epileptic hippocampus expresses higher levels of NPY, which may account for an increased basal inhibition of glutamate release. Consistently, the blockade of Y(2) receptors increased KCl-evoked glutamate release, and there was an increase in Y(2) receptor mRNA levels 30 days after kainic acid injection, suggesting a basal effect of NPY through Y(2) receptors. Taken together, these results indicate that an increased function of the NPY modulatory system in the epileptic hippocampus may contribute to basal inhibition of glutamate release and control hyperexcitability.  相似文献   

18.
Debate exists regarding the relative importance of neuropeptide Y (NPY) in the pathogenesis of genetic and non-genetic hypertension. NPY concentrations were compared in conduit, mesenteric and renal vasculatures and in hypothalamic and medullary regions of age-matched normotensive control, aortic banded and spontaneously hypertensive rats (SHRs). Lower NPY concentrations were measured in the pre-optic area of banded rats compared to controls and SHR. Renal vein NPY levels were reduced in banded animals, whereas renal artery levels were decreased in SHR. In mesenteric arteries, NPY concentration was selectively increased in SHR. These findings suggest that local hemodynamic alterations influence endogenous levels of this potent vasoconstrictor.  相似文献   

19.
20.
Agmatine and neuropeptide Y (NPY) are widely distributed in central nervous system and critically involved in modulation of depressive behavior in experimental animals. However their mutual interaction, if any, in regulation of depression remain largely unexplored. In the present study we explored the possible interaction between agmatine and neuropeptide Y in regulation of depression like behavior in forced swim test. We found that acute intracerebroventricular (i.c.v.) administration of agmatine (20–40 μg/rat), NPY (5 and 10 μg/rat) and NPY Y1 receptor agonist, [Leu31, Pro34]-NPY (0.4 and 0.8 ng/rat) dose dependently decreased immobility time in forced swim test indicating their antidepressant like effects. In combination studies, the antidepressant like effect of agmatine (10 μg/rat) was significantly potentiated by NPY (1 and 5 μg/rat, icv) or [Leu31, Pro34]-NPY (0.2 and 0.4 ng/rat, icv) pretreatment. Conversely, pretreatment of animals with NPY Y1 receptor antagonist, BIBP3226 (0.1 ng/rat, i.c.v.) completely blocked the antidepressant like effect of agmatine (20–40 μg/rat) and its synergistic effect with NPY (1 μg/rat, icv) or [Leu31, Pro34]-NPY (0.2 ng/rat, icv). The results of the present study showed that, agmatine exerts antidepressant like effects via NPYergic system possibly mediated by the NPY Y1 receptor subtypes and suggest that interaction between agmatine and neuropeptide Y may be relevant to generate the therapeutic strategies for the treatment of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号