首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclooxygenase (COX) is the key enzyme in the production of prostaglandins, which are essential for the response of bone to mechanical loading. We determined which COX-isoform, COX-1 or COX-2, determines loading-induced prostaglandin production in primary bone cells in vitro. Mouse and human bone cells reacted to 1 h of pulsating fluid flow (PFF, 0.6+/-0.3 Pa at 5 Hz) with an increased prostaglandin E(2) production, which continued 24 h after cessation of PFF. Inhibition of COX-2 activity with NS-398 abolished the stimulating effect of PFF both at 1 h and at 24 h post-incubation, while inhibition of COX-1 by SC-560 affected neither the early nor the late response to flow. PFF rapidly stimulated COX-2 mRNA expression at 1 h but did not affect COX-1 mRNA expression. COX-2 mRNA expression was still significantly enhanced 24 h after cessation of PFF. We conclude that COX-2 is the mechanosensitive form of COX that determines the response of bone tissue to mechanical loading.  相似文献   

2.
Mechanical loading-induced fluid flow in the lacuno-canalicular network is a possible signal for bone cell adaptive responses. In an earlier study we found that pulsating fluid flow (PFF, 0.7+/-0.02 Pa, 5 Hz, 0.4 Pa/s) stimulates the production of prostaglandins by neonatal mouse calvarial cells. In addition, mRNA expression of the inducible form of cyclooxygenase (COX-2), but not the constitutive form (COX-1), the major enzymes in prostaglandin production, was increased by PFF. The present study was performed to determine whether human primary bone cells from the iliac crest, respond to mechanical stress in a similar way as neonatal mouse calvarial cells. We subjected bone cells originating from the iliac crest of nine elderly women, between 56 and 80 yr of age, for 1 h to PFF and measured prostaglandin production and COX-1 and COX-2 mRNA expression. One hour PFF treatment stimulated the release of PGE2 by 3.5 fold and PGI2 by 2.2 fold. PFF also increased the expression of COX-2 mRNA by 2.9 fold, but did not change COX-1 mRNA. No correlation was found between donor age and PFF effect, neither on prostaglandin production nor on COX-2 mRNA expression. This study shows that bone cells from the iliac crest of elderly women react to PFF treatment in a similar way as neonatal mouse calvarial cells, namely with increased production of prostaglandins and upregulation of COX-2 mRNA expression. These results suggest that human bone cells from the iliac crest and neonatal mouse calvarial cells share a similar mechanotransduction pathway.  相似文献   

3.
The significance of cyclooxygenase-2 (COX-2) expression in ovarian cancer has been discussed. In this study, we found increased expression of COX-1 mRNA and protein in three out of 10 ovarian cancer cell lines. Prostaglandin E 2 (PGE2) production was elevated in these three cell lines, but not in other seven cell lines. COX-2 protein was not detected in any of the cell lines. Cytosolic prostaglandin E synthase (cPGES) mRNA and protein were detected in all 10 cell lines. Membrane-associated PGES-1 (mPGES-1) was detected in some of the ovarian cell lines, but its presence did not correspond with PGE2 production. In contrast, mPGES-2 mRNA and protein were detected in all 10 cell lines. A nonselective COX inhibitor (indometacin) and a selective COX-1 inhibitor (SC-560) strongly inhibited PGE2 production by the three cell lines, while selective COX-2 inhibitors (NS-398 and rofecoxib) did not inhibit PGE2 production. In addition, increased expression of COX-1, not COX-2 protein was observed in the mass of ovarian cancer tissues from 22 patients when compared with that in normal tissue. These findings suggest that COX-1 might be a major enzyme regulating PGE2 production in ovarian cancer cells.  相似文献   

4.
Although histamine plays an essential role in inflammation, its influence on cyclooxygenases (COX) and prostanoid homeostasis is not well understood. In this study, we investigated the effects of histamine on the expression of COX-1 and COX-2 and determined their contribution to the production of PGE(2), prostacyclin (PGI(2)), and thromboxane A(2) in human coronary artery endothelial cells (HCAEC). Incubation of HCAEC monolayers with histamine resulted in marked increases in the expression of COX-2 and production of PGI(2) and PGE(2) with no significant change in the expression of COX-1. Histamine-induced increases in PGI(2) and PGE(2) production were due to increased expression and function of COX-2 because gene silencing by small interfering RNA or inhibition of the catalytic activity by a COX-2 inhibitor blocked prostanoid production. The effects of histamine on COX-2 expression and prostanoid production were mediated through H(1) receptors. In addition to the direct effect, histamine was found to amplify LPS-stimulated COX-2 expression and PGE(2) and PGI(2) production. In contrast, histamine did not stimulate thromboxane A(2) production in resting or LPS-activated HCAEC. Histamine-induced increases in the production of PGE(2) and PGI(2) were associated with increased expression of mRNA encoding PGE(2) and PGI(2) synthases. The physiological role of histamine on the regulation of COX-2 expression in the vasculature is indicated by the findings that the expression of COX-2 mRNA, but not COX-1 mRNA, was markedly reduced in the aortic tissues of histidine decarboxylase null mice. Thus, histamine plays an important role in the regulation of COX-2 expression and prostanoid homeostasis in vascular endothelium.  相似文献   

5.
We investigated the action of macrolide antibiotics, which are considered to have anti-inflammatory activity, on lipopolysaccharide (LPS)-stimulated prostaglandin (PG) E2 synthesis and the expression of mRNAs for cytosolic phospholipase A2 (cPLA2), cyclooxygenase (COX)-1, and COX-2 in human leukocytes. The production of LPS-stimulated PGE2 was significantly increased in peripheral polymorphonuclear leukocytes (PMNLs) and in mononuclear leukocytes (MNLs). Amounts of mRNAs for COX-2 and cPLA2, but not for COX-1, were enhanced by LPS in PMNLs and MNLs. The LPS-enhanced PGE2 synthesis and the expression of cPLA2 and COX-2 mRNAs were inhibited by clarithromycin, azithromycin and dexamethasone in PMNLs and MNLs. The mRNA expression of COX-1 in PMNLs was decreased by clarithromycin and azithromycin. Macrolide antibiotics inhibited PGE2 synthesis in human leukocytes by suppressing cPLA2, COX-1, and COX-2 mRNA expression. These data indicate one mechanism of macrolide anti-inflammatory activity.  相似文献   

6.
前列腺素E2(prostaglandin E2, PGE2)作为细胞因子,在骨代谢中扮演重要角色. 它通过刺激成骨细胞核因子κB受体活化因子配基(receptor activator of nuclear factor kappa B ligand, RANKL)表达,促进破骨细胞的分化成熟. 然而,其是否参与了电磁场调节骨代谢仍不清楚.PGE2的生物合成受到环加氧酶(cyclooxygenase, COX)的调节. 在细胞中存在2种不同的环加氧酶,COX-1和COX-2. 其中,COX-2是引起PGE2分泌增加的主要原因. 其活性受到细胞核因子κB(nuclear factor kappa B, NF-κB)的调节.本文通过检测体外培养成骨细胞PGE2分泌,COX-2蛋白表达以及Cox-2、Opg、Rankl和Nf-κb 基因表达发现,经50 Hz 1.8 mT正弦交变电磁场(sinusoidal electromagnetic fields, SEMFs)处理后,由COX-2介导的PGE2分泌以及cox-2、Nf-κb的基因表达皆下调,但Nf-κb的变化先于cox-2的变化,而opg/rankl基因表达则恰恰相反,说明电磁场通过抑制Nf-κb的转录降低由COX-2介导的PGE2的分泌,进而降低对Rankl表达的刺激作用,抑制破骨细胞的分化成熟.  相似文献   

7.
We have recently reported that cyclooxygenase (COX)-2-deficiency affects brain upstream and downstream enzymes in the arachidonic acid (AA) metabolic pathway to prostaglandin E2 (PGE2), as well as enzyme activity, protein and mRNA levels of the reciprocal isozyme, COX-1. To gain a better insight into the specific roles of COX isoforms and characterize the interactions between upstream and downstream enzymes in brain AA cascade, we examined the expression and activity of COX-2 and phospholipase A2 enzymes (cPLA2 and sPLA2), as well as the expression of terminal prostaglandin E synthases (cPGES, mPGES-1, and - 2) in wild type and COX-1(-/-) mice. We found that brain PGE2 concentration was significantly increased, whereas thromboxane B2 (TXB2) concentration was decreased in COX-1(-/-) mice. There was a compensatory up-regulation of COX-2, accompanied by the activation of the NF-kappaB pathway, and also an increase in the upstream cPLA2 and sPLA2 enzymes. The mechanism of NF-kappaB activation in the COX-1(-/-) mice involved the up-regulation of protein expression of the p50 and p65 subunits of NF-kappaB, as well as the increased protein levels of phosphorylated IkappaBalpha and of phosphorylated IKKalpha/beta. Overall, our data suggest that COX-1 and COX-2 play a distinct role in brain PG biosynthesis, with basal PGE2 production being metabolically coupled with COX-2 and TXB2 production being preferentially linked to COX-1. Additionally, COX-1 deficiency can affect the expression of reciprocal and coupled enzymes, COX-2, Ca2+ -dependent PLA2, and terminal mPGES-2, to overcome defects in brain AA cascade.  相似文献   

8.
Cyclooxygenase-2 (COX-2) is important in the progression of epithelial tumors. Evidence indicates that omega-6 PUFAs such as arachidonic acid (AA) promote the growth of tumor cells; however, omega-3 fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] inhibit tumor cell proliferation. We investigated the effects of omega-3 PUFA on the expression and function of COX-2 in 70W, a human melanoma cell line that metastasizes to the brain in nude mice. We show that 1) tumor necrosis factor-alpha upregulates the expression of both COX-2 mRNA and prostaglandin E2 (PGE2) production, and 2) omega-3 and omega-6 PUFA regulate COX-2 mRNA expression and PGE2 production. AA increased COX-2 mRNA expression and prostaglandin production in omega-6-stimulated 70W cells. Conversely, COX-2 mRNA expression decreased in cells incubated with EPA or DHA. AA increased Matrigel invasion 2.4-fold, whereas EPA or DHA did not. Additionally, PGE2 increased in vitro invasion 2.5-fold, whereas exposure to PGE3 significantly decreased invasion. Our results demonstrate that incubation of 70W cells with either AA or PGE2 increased invasiveness, whereas incubation with EPA or DHA downregulated both COX-2 mRNA and protein expression, with a subsequent decrease in Matrigel invasion. Taken together, these results indicate that omega-3 PUFA regulate COX-2-mediated invasion in brain-metastatic melanoma.  相似文献   

9.
Cyclooxygenase (COX)-2 is generally known as an inducible enzyme, and it produces arachidonic acid to prostaglandin E2 (PGE2), which modulates bone metabolism. Here, we investigated the expression and role of COX isomers in human mesenchymal stem cells. Human mesenchymal stem cells constitutively expressed COX-2 as well as COX-1, and secretion of PGE2 was completely inhibited by NS-398, a specific inhibitor of COX-2. Levels of secreted PGE2 were strikingly higher in human mesenchymal stem cells than in osteoblastic cells differentiated from the mesenchymal cells. This higher production of PGE2 in mesenchymal stem cells was due to higher expression of membrane-associated PGE synthase (mPGES) regulated by early growth response factor-1 (Egr-1). Treatment of human mesenchymal stem cells with NS-398 suppressed expression of bone morphogenetic protein-2 (BMP-2). The suppression of BMP-2 by NS-398 was abrogated by an EP4 receptor agonist as well as by PGE2. Moreover, BMP-2 expression was suppressed by an EP4 receptor antagonist. These data indicate that PGE2 produced by COX-2 increases BMP-2 expression via binding the EP4 receptor.  相似文献   

10.
The role of prostaglandins (PGs) in apoptosis in preimplantation mice embryo development is reported in this study. It is known that apoptosis plays a very important role in normal mice embryo development. Very few reports are available on this subject. Embryos (6-8 cells) were cultured in the presence of a selective cyclooxygenase (COX)1 inhibitor (SC560), a selective COX2 inhibitor (NS398) and a selective prostacyclin synthase (PGIS) inhibitor (U51605) in a 48-h culture. In another experiment, culture media were supplemented with prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2 or prostacyclin) analogues. The apoptosis was evaluated by detection of active caspase-3. It was strongly detected in the presence of selective COX-2 and PGIS inhibitors, which can be decreased by a PGI2 analogue. In our embryo transfer experiment, the implantation rate decreased with exposure to either the COX2 or the PGIS inhibitor which is increased further after PGI2 supplementation. The level of PGI2 is also higher at the 8-16-cell stage, compaction and blastocyst stage than PGE2. All these results indicate that COX2-derived PGI2 plays an important role in preimplantation embryo development and acts as an antiapopetic factor in in vitro culture.  相似文献   

11.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

12.
13.
In this paper, we have determined the effect of both muscarinic acetylcholine receptor (mAChR) and exogenous prostaglandin E(2) (PGE(2)) on PGE(2) production and cyclooxygenases (COX) mRNA gene expression on rat cerebral frontal cortex. Carbachol and PGE(2) increase endogenous PGE(2) production and the COX-1 mRNA levels by activation of PLA(2)s. The COX-1 and COX-2 activity participated in the production of PGE(2) triggered by exogenous PGE(2). While in carbachol-PGE(2) only COX-1 activity is affected. The specific inhibition of PGE(2) receptor was able to impair the increase of endogenous PGE(2) production triggered by both carbachol and exogenous PGE(2). These results suggest that carbachol-activation mAChR increased PGE(2) production that in turn interacting with its own receptor triggers an additional production of PGE(2). Both mechanisms appear to occur by using PLA(2) signaling system. This data should be able to contribute to understand the involvement of PGE(2) in normal brain function and its participation in neuroinflammatory processes.  相似文献   

14.
The two cyclooxygenase (COX) isoforms, COX-1 and COX-2, both metabolize arachidonic acid to PGH(2), the common substrate for thromboxane A(2) (TXA(2)), prostacyclin (PGI(2)), and PGE(2) synthesis. We characterized the synthesis of these prostanoids in HUVECs in relation to COX-1 and COX-2 activity. Untreated HUVEC expressed only COX-1, whereas addition of IL-1beta caused induction of COX-2. TXA(2) was the predominant COX-1-derived product, and TXA(2) synthesis changed little with up-regulation of COX-2 by IL-1beta (2-fold increase). By contrast, COX-2 up-regulation was associated with large increases in the synthesis of PGI(2) and PGE(2) (54- and 84-fold increases, respectively). Addition of the selective COX-2 inhibitor, NS-398, almost completely abolished PGI(2) and PGE(2) synthesis, but had little effect on TXA(2) synthesis. The up-regulation of COX-2 by IL-1beta was accompanied by specific up-regulation of PGI synthase and PGE synthase, but not TX synthase. An examination of the substrate concentration dependencies showed that the pathway of TXA(2) synthesis was saturated at a 20-fold lower arachidonic acid concentration than that for PGI(2) and PGE(2) synthesis. In conclusion, endothelial prostanoid synthesis appears to be differentially regulated by the induction of COX-2. The apparent PGI(2) and PGE(2) linkage with COX-2 activity may be explained by a temporal increase in total COX activity, together with selective up-regulation of PGI synthase and PGE synthase, and different kinetic characteristics of the terminal synthases. These findings have particular importance with regard to the potential for cardiovascular consequences of COX-2 inhibition.  相似文献   

15.
Mechanical stress and prostaglandin E2 synthesis in cartilage   总被引:1,自引:0,他引:1  
Knee osteoarthritis (OA) results, at least in part, from overloading and inflammation leading to cartilage degradation. Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in OA in which metalloproteinase (MMP) is crucial for cartilage degradation. Its synthesis is the result of cyclooxygenase (COX) and prostaglandin E synthase (PGES) activities whereas NAD+-dependent 15 hydroxy-prostaglandin dehydrogenase (15-PGDH) is the key enzyme implicated in the catabolism of PGE2. Among the isoforms described, COX-1 and cytosolic PGES are constitutively expressed whereas COX-2 and microsomal PGES type 1 (mPGES-1) are inducible in an inflammatory context. We investigated the regulation of the COX, PGES and 15-PGDH and MMP-2, MMP-9 and MMP-13 genes by mechanical stress applied to cartilage explants. Mouse cartilage explants were subjected to compression (0.5 Hz, 1 MPa) from 2 to 24 h. After determination of the PGE2 release in the media, mRNA and proteins were extracted directly from the cartilage explants and analyzed by real-time RT-PCR and western blot respectively. Mechanical compression of cartilage explants significantly increased PGE2 production in a time dependent manner. This was not due to the synthesis of IL-1, since pretreatment with IL1-Ra did not alter the PGE2 synthesis. Interestingly, COX-2 and mPGES-1 mRNA expression significantly increased after 2 hours, in parallel with protein expression. Moreover, we observed a delayed overexpression of 15-PGDH just before the decline of PGE2 synthesis after 18 hours suggesting that PGE2 synthesis could be altered by the induction of 15-PGDH expression. MAPK are involved in signaling, since specific inhibitors partially inhibited COX-2 and mPGES-1 expressions. Lastly, compression induced MMP-2, -9, -13 mRNA expressions in cartilage. We conclude that dynamic compression induces pro-inflammatroy mediators release and matrix degradating enzymes synthesis. Notably, compression increases mPGES-1 mRNA and protein expression in cartilage explants. Thus, the mechanosensitive mPGES-1 enzyme represents a potential therapeutic target in osteoarthritis.  相似文献   

16.
The effects of ethanol on inducible prostaglandin production in RAW macrophages were investigated. Indomethacin (1 microM) or cycloheximide (1 microM) abolished prostaglandin E2 (PGE2) production induced by lipopolysaccharide (LPS, 1 microg/ml). Ethanol at concentrations from 100 mM to 600 mM concentration-dependently inhibited inducible PGE2 production, while ethanol only at higher concentrations (400 mM or more) showed cytotoxity to the cells. Cyclooxygenase-2 (COX-2) activity, estimated by transformation of exogenous arachidonic acid into PGE2, was not affected by ethanol (100-400 mM). LPS-induced expression of COX-2 mRNA was inhibited by ethanol (50-400 mM). On the other hand, protein expression of COX-2 by LPS was significantly increased by ethanol (100-400 mM). Ethanol alone at concentrations up to 600 mM did not induce expression of COX-2 protein. In a medium containing arachidonic acid (1 microM), ethanol at a low concentration (100 mM) did not significantly affect LPS-induced PGE2 production. These results suggest that ethanol shows diverse effects on the pathway of inducible PGE2 production in macrophages. Finally, ethanol may suppress utilization of arachidonic acid, resulting in reduction of inducible PGE2 production. Further study is needed to elucidate the mechanism of dissociation of ethanol effects on protein and mRNA expression.  相似文献   

17.
18.
In ruminants, endometrial prostaglandin F(2alpha) (PGF(2alpha)) is responsible for luteolysis and prostaglandin E(2) (PGE(2)) is thought to be involved in maternal recognition of pregnancy. In the present study, healthy uteri were collected from cows at the abattoir, and days of the estrous cycle were determined macroscopically. The uteri were classified into seven groups as Days 1-3, 4-6, 7-9, 10-12, 13-15, 16-18, and 19-21 of the estrous cycle. Endometrial scrapings were collected. The expression of cyclooxygenase (COX)-1 and COX-2 mRNAs and proteins and PGE synthase (PGES) mRNA was analyzed by Northern and Western blot. There was no expression of COX-1, either mRNA or protein, on any day of the estrous cycle. In contrast, COX-2 mRNA and protein were expressed at low and high levels on Days 1-12 and 13-21 of the estrous cycle, respectively. The level of expression of PGES was moderate, low, and high on Days 1-3, 4-12, and 13-21 of the estrous cycle, respectively. There were significant correlations between COX-2 mRNA and protein levels and between COX-2 and PGES mRNA levels. COX-1 mRNA and protein are not expressed on any day of the estrous cycle, whereas COX-2 mRNA and protein and PGES mRNA are differentially expressed and regulated in bovine endometrium during the estrous cycle. COX-2, rather than COX-1, is the primary isoenzyme involved in the endometrial production of prostaglandins, and the COX-2 and PGES pathway is responsible for the endometrial production of PGE(2) in the bovine endometrium during the estrous cycle.  相似文献   

19.
Platelet-vascular endothelial cell interactions are central to the maintenance of vascular homeostasis. Thromboxane A2 (TXA2) and prostacyclin (prostaglandin (PG)I2) are the major products of cyclooxygenase (COX) metabolism by platelets and the vascular endothelium, respectively. Here we report the effects of platelet-endothelial interactions on human umbilical vein endothelial cells (HUVECs) COX-2 expression and prostanoid synthesis. Co-incubation of platelets with HUVECs resulted in a dose-dependent induction in COX-2 expression. This was accompanied by a relatively small increase in thromboxane B2 synthesis (2 ng) by comparison to the production of 6-keto-PGF1alpha and PGE2, which increased by approximately 14 and 12 ng, respectively. Abrogation of platelet-HUVEC interactions excluded direct cell-cell contact as a required event. Preincubation of HUVECs with SQ29548, a TXA2 receptor antagonist, dose-dependently inhibited platelet-induced COX-2 expression and prostanoid synthesis. Similarly, if platelet TXA2 synthesis was inhibited no induction of COX-2 was observed. Furthermore, a TXA2 analog, carbocyclic TXA2, induced HUVEC COX-2 expression and the synthesis of 6-keto-PGF1alpha and PGE2. This was also associated with an increase in the expression and activity of PGI synthase and PGE synthase but not TX synthase. Platelet co-incubation (or TXA2) also selectively activated the p44/42 mitogen-activated protein kinase pathway to regulate HUVEC COX-2 expression. Thus it seems that platelet-derived TXA2 can act in a paracrine manner to up-regulate endothelial COX-2 expression and PGI2 synthesis. These observations are of particular importance given the recent observations regarding selective COX-2 inhibitors and the suppression of PGI2 synthesis.  相似文献   

20.
Parathyroid hormone (PTH) and mechanical stress both stimulate bone formation but have opposite effects on bone resorption. PTH increased loading-induced bone formation in a rat model, suggesting that there is an interaction of these stimuli, possibly at the cellular level. To investigate whether PTH can modulate mechanotransduction by bone cells, we examined the effect of 10-9 M human PTH-(1-34) on fluid flow-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production by primary mouse osteoblastic cells in vitro. Mechanical stress applied by means of a pulsating fluid flow (PFF; 0.6 +/- 0.3 Pa at 5 Hz) stimulated both NO and PGE2 production twofold. In the absence of stress, PTH also caused a twofold increase in PGE2 production, but NO release was not affected and remained low. Simultaneous application of PFF and PTH nullified the stimulating effect of PFF on NO production, whereas PGE2 production was again stimulated only twofold. Treatment with PTH alone reduced NO synthase (NOS) enzyme activity to undetectable levels. We speculate that PTH prevents stress-induced NO production via the inhibition of NOS, which will also inhibit the NO-mediated upregulation of PGE2 by stress, leaving only the NO-independent PGE2 upregulation by PTH. These results suggest that mechanical loading and PTH interact at the level of mechanotransduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号