首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although studies of population genetic structure are very common, whether genetic structure is stable over time has been assessed for very few taxa. The question of stability over time is particularly interesting for frogs because it is not clear to what extent frogs exist in dynamic metapopulations with frequent extinction and recolonization, or in stable patches at equilibrium between drift and gene flow. In this study we collected tissue samples from the same five populations of leopard frogs, Rana pipiens, over a 22-30 year time interval (11-15 generations). Genetic structure among the populations was very stable, suggesting that these populations were not undergoing frequent extinction and colonization. We also estimated the effective size of each population from the change in allele frequencies over time. There exist few estimates of effective size for frog populations, but the data available suggest that ranid frogs may have much larger ratios of effective size (Ne) to census size (Nc) than toads (bufonidae). Our results indicate that R. pipiens populations have effective sizes on the order of hundreds to at most a few thousand frogs, and Ne/Nc ratios in the range of 0.1-1.0. These estimates of Ne/Nc are consistent with those estimated for other Rana species. Finally, we compared the results of three temporal methods for estimating Ne. Moment and pseudolikelihood methods that assume a closed population gave the most similar point estimates, although the moment estimates were consistently two to four times larger. Wang and Whitlock's new method that jointly estimates Ne and the rate of immigration into a population (m) gave much smaller estimates of Ne and implausibly large estimates of m. This method requires knowing allele frequencies in the source of immigrants, but was thought to be insensitive to inexact estimates. In our case the method may have failed because we did not know the true source of immigrants for each population. The method may be more sensitive to choice of source frequencies than was previously appreciated, and so should be used with caution if the most likely source of immigrants cannot be identified clearly.  相似文献   

2.
The deleterious effects of inbreeding have long been known, and inbreeding can increase the risk of extinction for local populations in metapopulations. However, other consequences of inbreeding in metapopulations are still not well understood. Here we show the presence of strong inbreeding depression in a rockpool metapopulation of the planktonic freshwater crustacean Daphnia magna, which reproduces by cyclical parthenogenesis. We conducted three experiments in real and artificial rockpools to quantify components of inbreeding depression in the presence and the absence of competition between clonal lines of selfed and outcrossed genotypes. In replicated asexual populations, we recorded strong selection against clones produced by selfing in competition with clones produced by outcrossing. In contrast, inbreeding depression was much weaker in single-clone populations, that is, in the absence of competition between inbred and outbred clones. The finding of a competitive advantage of the outbred genotypes in this metapopulation suggests that if rockpool populations are inbred, hybrid offspring resulting from crosses between immigrants and local genotypes might have a strong selective advantage. This would increase the effective gene flow in the metapopulation. However, the finding of low inbreeding depression in the monoclonal populations suggests that inbred and outbred genotypes might have about equal chances of establishing new populations.  相似文献   

3.
Recent research shows that density dependence should result in predictable movements between habitats of different suitability, depending on whether population densities are increasing or decreasing. When population densities are increasing, habitats become filled in order of their suitability, resulting in a net flow from high suitability to low suitability. When populations decrease in density, the reverse can happen. These patterns suggest that genetic information can be used to infer habitat suitability since individual-based genetic assignment tests permit high resolution assessments of migration. We used replicated landscapes to study fishers ( Martes pennanti ) during a population increase and predicted that there should be a net flow of individuals from areas of shallow to deep snow, since snow depth has previously been linked to fisher fitness. A total of 769 fishers were sampled from 35 different landscapes and profiled at 16 microsatellite loci. From assignment tests, we inferred five genetic populations. By assigning each of the 35 landscapes to one of these five populations, we were able to determine the proportion of immigrants to each. Consistent with our prediction, there was a positive relationship between the proportion of immigrants and snow depth. The best model of fisher habitat suitability was one with both snow depth and the proportion of coniferous forest in landscapes. Our findings suggest that where population trend is known, genetic information can be used to measure habitat suitability.  相似文献   

4.
The Terai is one of the world's most spectacular landscapes, encompassing parts of Nepal and northern India. This area used to harbour large and continuous populations of charismatic species like elephants, tigers and rhinoceros. However, recent habitat fragmentation reduced these populations into small, partially or completely isolated remnants. The largest of these fragments in Nepal is the Bardia National Park. Here, the elephant population was functionally extinct in the early 1970s and -80s, but was rescued by a considerable number of immigrants in 1994. In order to assess population size, sex ratio, age structure, and levels of genetic variation, we carried out non-invasive genetic sampling, using elephant dung as the source of DNA. A capture-mark-recapture estimate of population size suggested that there were 57 individuals in the study area, which agrees well with field observations. Notably, a strongly male-biased sex ratio was evident among sub-adult individuals. This observation suggests the presence of sub-adult immigrants in the population, which was supported by formal migrant detection analysis. Genetic variation was quite high and the evidence for male immigrants suggests that there are good prospects for maintenance of genetic diversity. A decade ago a large-scale project was initiated in the Terai region to link remaining populations of large mammals through dispersal corridors. The program is basically founded on the assumption that habitat fragments are isolated with little or no migration between them. Our results indicate that this may not be the case, at least not for the Asian elephant in western Nepal, which therefore reduces the alleged extinction risk from genetic erosion and stochastic demographic events.  相似文献   

5.
Dispersal is a key parameter in evolutionary, demographic and conservation theory, but the factors influencing dispersal between populations are rarely known, and the contribution of immigrants to population stability remains uncertain. Using dispersal data from nine island populations of song sparrows, we show that female and male immigrants responded differently to population structure: in females, immigration varied with adult sex ratio; whereas immigration by males was more influenced by population density. These patterns are consistent with the hypothesis that intra-sexual competition for breeding resources influenced recruitment patterns. Immigrants often constituted a substantial fraction of local population size, and in six cases immigration by females prevented the extirpation of that sex from the island. Breeding vacancies and extirpations may have been more likely in females because their apparent survival was lower than in males. Local recruitment and immigration varied markedly among islands, perhaps as consequence of island size and isolation. Overall, our results suggest that immigration varied with local demography in a sex-specific way, stabilized population numbers and reduced extinction rates in the smallest populations.  相似文献   

6.
Stephen F. Matter  Jens Roland 《Oikos》2010,119(12):1961-1969
While many studies have examined factors potentially impacting the rate of local population extinction, few experimental studies have examined the consequences of extinction for spatial population dynamics. Here we report results from a large‐scale, long‐term experiment examining the effects of local population extinction for the dynamics of surrounding populations. From 2001–2008 we removed all adult butterflies from two large, neighboring populations within a system of 17 subpopulations of the Rocky Mountain Apollo butterfly, Parnassius smintheus. Surrounding populations were monitored using individual, mark–recapture methods. We found that population removal decreased immigration to surrounding populations in proportion to their connectivity to the removed populations. Correspondingly, within‐generation population abundance declined. Despite these effects, we saw little consistent impact between generations. The extinction rates of surrounding populations were unaffected and local population growth was not consistently reduced by the lack of immigration. The broader results show that immigration affects local abundance within generations, but dynamics are mediated by density‐dependence within populations and by broader density‐independent factors acting between generations. The loss of immigrants resulting from extinction has little impact on the persistence of local populations in this system.  相似文献   

7.
Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.  相似文献   

8.
Substantial genetic differentiation is frequently observed among populations of cyclically parthenogenetic zooplankton despite their high dispersal capabilities and potential for gene flow. Local adaptation has been invoked to explain population genetic differentiation despite high dispersal, but several neutral models that account for basic life history features also predict high genetic differentiation. Here, we study genetic differentiation among four populations of Daphnia pulex in east central Illinois. As with other studies of Daphnia, we demonstrate substantial population genetic differentiation despite close geographic proximity (<50 km; mean θ = 0.22). However, we explicitly tested and failed to find evidence for, the hypothesis that local adaptation to food resources occurs in these populations. Recognizing that local adaptation can occur in traits unrelated to resources, we estimated contemporary migration rates (m) and tested for admixture to evaluate the hypothesis that observed genetic differentiation is consistent with local adaptation to other untested ecological factors. Using Bayesian assignment methods, we detected migrants in three of the four study populations including substantial evidence for successful reproduction by immigrants in one pond, allowing us to reject the hypothesis that local adaptation limits gene flow for at least this population. Thus, we suggest that local adaptation does not explain genetic differentiation among these Daphnia populations and that other factors related to extinction/colonization dynamics, a long approach to equilibrium FST or substantial genetic drift due to a low number of individuals hatching from the egg bank each season may explain genetic differentiation.  相似文献   

9.
Wang J  Whitlock MC 《Genetics》2003,163(1):429-446
In the past, moment and likelihood methods have been developed to estimate the effective population size (N(e)) on the basis of the observed changes of marker allele frequencies over time, and these have been applied to a large variety of species and populations. Such methods invariably make the critical assumption of a single isolated population receiving no immigrants over the study interval. For most populations in the real world, however, migration is not negligible and can substantially bias estimates of N(e) if it is not accounted for. Here we extend previous moment and maximum-likelihood methods to allow the joint estimation of N(e) and migration rate (m) using genetic samples over space and time. It is shown that, compared to genetic drift acting alone, migration results in changes in allele frequency that are greater in the short term and smaller in the long term, leading to under- and overestimation of N(e), respectively, if it is ignored. Extensive simulations are run to evaluate the newly developed moment and likelihood methods, which yield generally satisfactory estimates of both N(e) and m for populations with widely different effective sizes and migration rates and patterns, given a reasonably large sample size and number of markers.  相似文献   

10.
Dispersal and competition have both been suggested to drive variation in adaptability to a new environment, either positively or negatively. A simultaneous experimental test of both mechanisms is however lacking. Here, we experimentally investigate how population dynamics and local adaptation to a new host plant in a model species, the two‐spotted spider mite (Tetranychus urticae), are affected by dispersal from a stock population (no‐adapted) and competition with an already adapted spider mite species (Tetranychus evansi). For the population dynamics, we find that competition generally reduces population size and increases the risk of population extinction. However, these negative effects are counteracted by dispersal. For local adaptation, the roles of competition and dispersal are reversed. Without competition, dispersal exerts a negative effect on adaptation (measured as fecundity) to a novel host and females receiving the highest number of immigrants performed similarly to the stock population females. By contrast, with competition, adding more immigrants did not result in a lower fecundity. Females from populations with competition receiving the highest number of immigrants had a significantly higher fecundity than females from populations without competition (same dispersal treatment) and than the stock population females. We suggest that by exerting a stronger selection on the adapting populations, competition can counteract the migration load effect of dispersal. Interestingly, adaptation to the new host does not significantly reduce performance on the ancestral host, regardless of dispersal rate or competition. Our results highlight that assessments of how species can adapt to changing conditions need to jointly consider connectivity and the community context.  相似文献   

11.
Quantitative genetic variation in an ecological setting   总被引:1,自引:0,他引:1  
The machinery was developed to investigate the behavior of quantitative genetic variation in an ecological model of a finite number of islands of finite size, with migration rate m and extinction rate e, for a quantitative genetic model general for numbers of alleles and loci and additive, dominance, and additive by additive epistatic effects. It was necessary to reckon with seven quadratic genetic components, whose coefficients in the genotypic variance components within demes, sigma Gw2, between demes within populations, sigma s2, and between replicate populations, sigma r2, are given by descent measures. The descent measures at any time are calculated with the use of transition equations which are determined by the parameters of the ecological model. Numerical results were obtained for the coefficients of the quadratic genetic components in each of the three genotypic variance components in the early phase of differentiation. The general effect of extinction is to speed up the time course leading to fixation, to increase sigma r2, and to decrease sigma s2 (with a few exceptions) in comparison with no extinction. The general effect of migration is to slow down the time course leading to fixation, to increase sigma Gw2, at least in the later generations, and to decrease sigma s2 (with a few exceptions) in comparison with no migration. Except for these, the effects of migration and extinction on the variance components are complex, depending on the genetic model, and sometimes involve interaction of migration and extinction. Sufficient details are given for an investigator to evaluate numerically the results for variations in the quantitative genetic and ecological models.  相似文献   

12.

Background  

Inbreeding can slow population growth and elevate extinction risk. A small number of unrelated immigrants to an inbred population can substantially reduce inbreeding and improve fitness, but little attention has been paid to the sex-specific effects of immigrants on such "genetic rescue". We conducted two subsequent experiments to investigate demographic consequences of inbreeding and genetic rescue in guppies.  相似文献   

13.
The bananaquit (Coereba flaveola) has been well studied throughout the Caribbean region from a phylogenetic perspective. However, data concerning the population genetics and long-term demography of this bird species are lacking. In this study, we focused on three populations within the Lesser Antilles and one on Puerto Rico and assessed genetic and demographic processes, using five nuclear and two mitochondrial markers. We found that genetic diversity of bananaquits on Puerto Rico exceeds that on the smaller islands (Dominica, Guadeloupe and Grenada); this might reflect either successive founder events from Puerto Rico to Grenada, or more rapid drift in smaller populations subsequent to colonization. Population growth rate estimates showed no evidence of rapid expansion and migration was indicated only between populations from the closest islands of Dominica and Guadeloupe. Overall, our results suggest that a "demographic fission" model, considering only mutation and drift, but without migration, can be applied to these bananaquit populations in the West Indies.  相似文献   

14.
Hakka and Chaoshanese are two unique Han populations residing in southern China but with northern Han (NH) cultural traditions and linguistic influences. Although most of historical records indicate that both populations migrated from northern China in the last two thousand years, no consensus on their origins has been reached so far. To shed more light on the origins of Hakka and Chaoshanese, mitochondrial DNAs (mtDNAs) of 170 Hakka from Meizhou and 102 Chaoshanese from Chaoshan area, Guangdong Province, were analyzed. Our results show that some southern Chinese predominant haplogroups, e.g. B, F, and M7, have relatively high frequencies in both populations. Although median network analyses show that Hakka/Chaoshanese share some haplotypes with NH, interpopulation comparison reveals that both populations show closer affinity with southern Han (SH) populations than with NH. In consideration of previous results from nuclear gene (including Y chromosome) research, it is likely that matrilineal landscapes of both Hakka and Chaoshanese have largely been shaped by the local people during their migration southward and/or later colonization in southern China, and factors such as cultural assimilation, patrilocality, and even sex‐bias in the immigrants might have played important roles during the process. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Beerli P 《Molecular ecology》2004,13(4):827-836
Current estimators of gene flow come in two methods; those that estimate parameters assuming that the populations investigated are a small random sample of a large number of populations and those that assume that all populations were sampled. Maximum likelihood or Bayesian approaches that estimate the migration rates and population sizes directly using coalescent theory can easily accommodate datasets that contain a population that has no data, a so-called 'ghost' population. This manipulation allows us to explore the effects of missing populations on the estimation of population sizes and migration rates between two specific populations. The biases of the inferred population parameters depend on the magnitude of the migration rate from the unknown populations. The effects on the population sizes are larger than the effects on the migration rates. The more immigrants from the unknown populations that are arriving in the sample populations the larger the estimated population sizes. Taking into account a ghost population improves or at least does not harm the estimation of population sizes. Estimates of the scaled migration rate M (migration rate per generation divided by the mutation rate per generation) are fairly robust as long as migration rates from the unknown populations are not huge. The inclusion of a ghost population does not improve the estimation of the migration rate M; when the migration rates are estimated as the number of immigrants Nm then a ghost population improves the estimates because of its effect on population size estimation. It seems that for 'real world' analyses one should carefully choose which populations to sample, but there is no need to sample every population in the neighbourhood of a population of interest.  相似文献   

16.
Human migration is nonrandom. In small scale societies of the past, and in the modern world, people tend to move to wealthier, safer, and more just societies from poorer, more violent, less just societies. If immigrants are assimilated, such nonrandom migration can increase the occurrence of culturally transmitted beliefs, values, and institutions that cause societies to be attractive to immigrants. Here we describe and analyze a simple model of this process. This model suggests that long run outcomes depend on the relative strength of migration and local adaptation. When local adaption is strong enough to preserve cultural variation among groups, cultural variants that make societies attractive always predominate, but never drive alternative variants to extinction. When migration predominates, outcomes depend both on the relative attractiveness of alternative variants and on the initial sizes of societies that provide and receive immigrants.  相似文献   

17.
The conceptualization of fragmented populations in terms of metapopulation theory has become standard over the last three decades. It is well known that increases in between‐patch migration rates cause more synchronous population fluctuations and that this coherence increases the risk of global metapopulation extinction. Because species’ migration rates and the probability of individuals surviving migration events depend on the effective distance between patches, the benefit of improving conservation corridors or the matrix between habitat patches has been questioned. As populations occur in the context of larger communities, moving from a metapopulation to a metacommunity model framework is a natural extension to address the generality of these conclusions. We show how considering a metacommunity can modify the conclusion that decreasing the effective distance between habitat patches (via improving matrix quality or other measures) necessarily increases the degree of metapopulation synchrony. We show that decreases in effective between‐patch distance may deter population synchrony because of the simultaneous effect this change has on the migration patterns of other species. These results indicate that species interactions need to be considered when the effect of conservation measures on population synchrony, and ultimately persistence, is addressed.  相似文献   

18.
Many amphibian populations worldwide have declined rapidly and been threatened with extinction in the past few decades because of human impacts on the environment. It is well known that urbanization reduces the genetic diversity of isolated populations. The concept that a reduction in genetic diversity leads to lower reproductive fitness has been predominantly supported by studies involving laboratory organisms, but has rarely been tested in wild populations. Here we examined whether genetic diversity affected hatchability, a population parameter related to reproductive success, in the populations of two pond-breeding amphibian species (Hynobius tokyoensis and Rana ornativentris) affected by urbanization. We surveyed 81 populations in the southwestern Kanto region of Japan. Mean hatchability of the populations was determined and genetic diversities were estimated via mitochondrial or microsatellite DNA analyses. Firstly, Random Forests (an ensemble machine learning method) models were applied to clarify the effects of environmental factors on both hatchability and genetic diversity. Subsequently, the relationships among environmental factors, genetic diversity, and mean hatchability were evaluated using path analysis. Mean hatchability was significantly affected by both urbanization and genetic diversity. This result shows that loss of genetic diversity may decrease a population’s reproductive success in the field.  相似文献   

19.
Many species persist as a metapopulation under a balance between the local extinction of subpopulations or demes and their recolonization through dispersal from occupied patches. Here we review the growing body of literature dealing with the genetic consequences of such population turnover. We focus our attention principally on theoretical studies of a classical metapopulation with a 'finite-island' model of population structure, rather than on 'continent-island' models or 'source-sink' models. In particular, we concern ourselves with the subset of geographically subdivided population models in which it is assumed that all demes are liable to extinction from time to time and that all demes receive immigrants. Early studies of the genetic effects of population turnover focused on population differentiation, such as measured by F(ST). A key advantage of F(ST) over absolute measures of diversity is its relative independence of the mutation process, so that different genes in the same species may be compared. Another advantage is that F(ST) will usually equilibrate more quickly following perturbations than will absolute levels of diversity. However, because F(ST) is a ratio of between-population differentiation to total diversity, the genetic effects of metapopulation processes may be difficult to interpret in terms of F(ST) on its own, so that the analysis of absolute measures of diversity in addition is likely to be informative. While population turnover may either increase or decrease F(ST), depending on the mode of colonization, recurrent extinction and recolonization is expected always to reduce levels of both within-population and species-wide diversity (piS and piT, respectively). One corollary of this is that piS cannot be used as an unbiased estimate of the scaled mutation rate, theta, as it can, with some assumptions about the migration process, in species whose demes do not fluctuate in size. The reduction of piT in response to population turnover reflects shortened mean coalescent times, although the distribution of coalescence times under extinction colonization equilibrium is not yet known. Finally, we review current understanding of the effect of metapopulation dynamics on the effective population size.  相似文献   

20.
Genetic rescue has been proposed as a management strategy to improve the fitness of genetically eroded populations by alleviating inbreeding depression. We studied the dynamics of genetic rescue in inbred populations of Drosophila. Using balancer chromosomes, we show that the force of heterosis that accompanies genetic rescue is large and allows even a recessive lethal to increase substantially in frequency in the rescued populations, particularly at stress temperatures. This indicates that deleterious alleles present in the immigrants can increase significantly in frequency in the recipient population when they are in linkage disequilibrium with genes responsible for the heterosis. In a second experiment we rescued eight inbred Drosophila populations with immigrants from two other inbred populations and observe: (i) there is a significant increase in viability both 5 and 10 generations after the rescue event, showing that the increase in fitness is not transient but persists long-term. (ii) The lower the fitness of the recipient population the larger the fitness increase. (iii) The increase in fitness depends significantly on the origin of the rescuers. The immigrants used were fixed for a conditional lethal that was mildly deleterious at 25°C but lethal at 29°C. By comparing fitness at 25°C (the temperature during the rescue experiment) and 29°C, we show that the lethal allele reached significant frequencies in most rescued populations, which upon renewed inbreeding became fixed in part of the inbred lines. In conclusion, in addition to the fitness increase genetic rescue can easily result in a substantial increase in the frequency of mildly deleterious alleles carried by the immigrants. This can endanger the rescued population greatly when it undergoes recurrent inbreeding. However, using a sufficient number of immigrants and to accompany the rescue event with the right demographic measures will overcome this problem. As such, genetic rescue still is a viable option to manage genetically eroded populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号