首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetobacter pasteurianus oxidizes glycidol with high activity, comparable to the oxidation of ethanol. The organism has a preference for the S-enantiomer, and the kinetic resolution process obeys a simple relationship, indicating an enantiomeric ratio (E) of 19. The compound is converted into glycidic acid, although a transient accumulation of glycidaldehyde occurs initially. Determination of other parameters revealed a temperature optimum of 50°C, long-term stability (cells in the resting state), and a pH optimum compatible with the chemical stability of glycidol. However, it was also noted that respiration rates decrease at concentrations of glycidol above 1 . This is most likely caused by substrate inhibition of the glycidol-oxidizing enzyme, the quinohemoprotein ethanol dehydrogenase. Comparison with existing methods for enantiomerically pure glycidol production indicated a number of attractive points for the method described here, although definitive evaluation must await further studies on the long-term stability under process conditions, reusability of the cells, and the mechanism of glycidol inhibition.  相似文献   

2.
A cytosolic thyroid-hormone-binding protein (xCTBP), predominantly responsible for the major binding activity of T3 in the cytosol of Xenopus liver, has been shown to be identical to aldehyde dehydrogenase class 1 (ALDH1) [Yamauchi, K., Nakajima, J., Hayashi, H., Horiuchi, R. & Tata, J.R. (1999) J. Biol. Chem. 274, 8460-8469]. Within this paper we surveyed which signaling, and other, compounds affect the thyroid hormone binding activity and aldehyde dehydrogenase activity of recombinant Xenopus ALDH1 (xCTBP/xALDH1) while examining the relationship between these two activities. NAD+ and NADH (each 200 microm), and two steroids (20 microm), inhibit significantly the T3-binding activity, while NADH and NADPH (each 200 microm), and iodothyronines (1 microm), inhibit the ALDH activity. Scatchard analysis and kinetic studies of xCTBP/xALDH1 indicate that NAD+ and T3 are noncompetitive inhibitors of thyroid-hormone-binding and ALDH activities, respectively. These results indicate the formation of a ternary complex consisting of the protein, NAD+ and thyroid hormone. Although the in vitro studies indicate that NAD+ and NADH markedly decrease T3-binding to xCTBP/xALDH1 at approximately 10-4 m, a concentration equal to the NAD content in various Xenopus tissues, photoaffinity-labeling of [125I]T3 using cultured Xenopus cells demonstrates xCTBP/xALDH1 bound T3 within living cells. These results raise the possibility that an unknown factor(s) besides NAD+ and NADH may modulate the thyroid-hormone-binding activity of xCTBP/xALDH1. In comparison, thyroid hormone, at its physiological concentration, would poorly modulate the enzyme activity of xCTBP/xALDH1.  相似文献   

3.
ALDH5 (aka succinic semialdehyde dehydrogenase) is a NAD(+)-dependent aldehyde dehydrogenase crucial for the proper removal of the GABA metabolite succinic semialdehyde (SSA). All known ALDH5 family members contain the conserved amino acid sequence "MITRK". Our studies of rat ALDH5A indicate that residue R166 in this sequence may play a role in the substrate specificity of ALDH5A for the gamma-carboxylated succinic semialdehyde versus other aliphatic and aromatic aldehydes including acetaldehyde and benzaldehyde. We tested the hypothesis that the R166 residue regulates aldehyde specificity by utilizing rat ALDH5A wild-type (R166wt) and R166K, R166H, R166A, and R166E mutants. The V(MAX) using SSA fell whereas the K(M) for SSA increased for all mutants analyzed yielding k(cat)/K(M) (s(-1)/microM) ratios of 52.3 (R166wt), 5.5 (R166K), 0.01 (R166H), 0.008 (R166E), and 0.004 (R166A). Utilization of acetaldehyde by the R166H mutant was similar to R166wt with k(cat)/K(M)'s of 0.003 and 0.002, respectively. Almost no activity towards acetaldehyde was noted for the R166E and R166A mutants. Unexpectedly, the K(M) for NAD(+) changed: 21 microM (R166wt), 81 microM (R166K), 63 microM (R166H), 35 microM (R166E) and 44 microM (R166A). As release of NADH can be a rate-limiting step for ALDH activity, NADH binding was evaluated for R166wt and R166H enzymes. The K(D) of NADH for R166H (0.9 microM) was 11-fold less than that of ALDH5A wt (10.3 microM) and possibly explains the increase in the K(M) for NAD(+). Furthermore, data using R166K and R166H mutants demonstrate that inhibition of enzyme activity by low pH is regulated in part by the R166 residue. Our data indicate that the R166 residue of ALDH5A regulates multiple enzymatic functions.  相似文献   

4.
Oral administration of 7.0 mg/kg calcium carbimide (calcium cyanamide, CC) to the rat produced differential inhibition of hepatic aldehyde dehydrogenase (ALDH) isozymes, as indicated by the time-course profiles of enzyme activity. The low-Km mitochondrial ALDH was most susceptible to inhibition following CC administration, with complete inhibition occurring at 0.5 h and return to control activity at 96 h. The low-Km cytosolic and high-Km mitochondrial, cytosolic, and microsomal ALDH isozymes were inhibited to a lesser degree and (or) for a shorter duration compared with the mitochondrial low-Km enzyme. The time course of carbimide, the hydrolytic product of CC, was determined in plasma following oral administration of 7.0 mg/kg CC to the rat. The maximum plasma carbimide concentration (102 ng/mL) occurred at 1 h and the apparent elimination half-life in plasma was 1.5 h. Carbimide was not measurable in the liver during the 6.5 h time interval when carbimide was present in the plasma. There were negative, linear correlations between plasma carbimide concentration and hepatic low-Km mitochondrial, low-Km cytosolic, and high-Km microsomal ALDH activities. In vitro studies demonstrated that carbimide, at concentrations obtained in plasma following oral CC administration, produced only 19% inhibition of low-Km mitochondrial ALDH and no inhibition of low-Km cytosolic and high-Km microsomal ALDH isozymes. These data demonstrate that carbimide, itself, is not primarily responsible for hepatic ALDH inhibition in vivo following oral CC administration. It would appear that carbimide must undergo metabolic conversion in vivo to inhibit hepatic ALDH enzymes, which is supported by the observation of no measurable carbimide in the liver when ALDH was maximally inhibited following oral CC administration.  相似文献   

5.
Amino acid sequencing of an internal peptide fragment derived from purified Xenopus cytosolic thyroid hormone-binding protein (xCTBP) demonstrates high similarity to the corresponding sequence of mammalian aldehyde dehydrogenase 1 (ALDH1) (Yamauchi, K., and Tata, J. R. (1994) Eur. J. Biochem. 225, 1105-1112). Here we show that xCTBP was co-purified with ALDH and 3,3',5-triiodo-L-thyronine (T3) binding activities. By photoaffinity labeling with [125I]T3, a T3-binding site in the xCTBP was estimated to reside in amino acid residues 93-114, which is distinct from the active site of the enzyme but present in the NAD+ binding domain. The amino acid sequences deduced from the two isolated xALDH1 cDNAs (xALDH1-I and xALDH1-II) were 94.6% identical to each other and very similar to those of mammalian ALDH1 enzymes. The two recombinant xALDH1 proteins exhibit both T3 binding activity and ALDH activity converting retinal to retinoic acid (RA), which are similar to those of xCTBP. The mRNAs were present abundantly in kidney and intestine of adult female Xenopus. Interestingly, their T3 binding activities were inhibited by NAD+ and NADH but not by NADP+ and NADPH, whereas NAD+ was required for their ALDH activities. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular level of free T3.  相似文献   

6.
This report describes the isolation of a heretofore uncharacterized aldehyde dehydrogenase (ALDH) with retinal dehydrogenase activity from rat kidney and the cloning and expression of a cDNA that encodes its human ortholog, the previously unknown ALDH12. The human ALDH12 cDNA predicts a 487-residue protein with the 23 invariant amino acids, four conserved regions, cofactor binding motif (G(209)XGX(3)G), and active site cysteine residue (Cys(287)) that typify members of the ALDH superfamily. ALDH12 seems at least as efficient (V(m)/K(m)) in converting 9-cis-retinal into the retinoid X receptor ligand 9-cis-retinoic acid as two previously identified ALDHs with 9-cis-retinal dehydrogenase activity, rat retinal dehydrogenase (RALDH) 1 and RALDH2. ALDH12, however, has approximately 40-fold higher activity with 9-cis- retinal than with all-trans-retinal, whereas RALDH1 and RALDH2 have equivalent and approximately 4-fold less efficiencies for 9-cis-retinal versus all-trans-retinal, respectively. Therefore, ALDH12 is the first known ALDH to show a preference for 9-cis-retinal relative to all-trans-retinal. Evidence consistent with the possibility that ALDH12 could function in a pathway of 9-cis-retinoic acid biosynthesis in vivo includes biosynthesis of 9-cis-retinoic acid from 9-cis-retinol in cells co-transfected with cDNAs encoding ALDH12 and the 9-cis-retinol/androgen dehydrogenase, cis-retinoid/androgen dehydrogenase type 1. Intense ALDH12 mRNA expression in adult and fetal liver and kidney, two organs that reportedly have relatively high concentrations of 9-cis-retinol, reinforces this notion.  相似文献   

7.
We have isolated the chick and mouse homologs of human aldehyde dehydrogenase 6 (ALDH6) that encode a third cytosolic retinaldehyde-specific aldehyde dehydrogenase. In both chick and mouse embryos, strong expression is observed in the sensory neuroepithelia of the head. In situ hybridization analysis in chick shows compartmentalized expression primarily in the ventral retina, olfactory epithelium, and otic vesicle; additional sites of expression include the isthmus, Rathke's pouch, posterior spinal cord interneurons, and developing limbs. Recombinant chick ALDH6 has a K(0.5) = 0.26 microm, V(max) = 48.4 nmol/min/mg and exhibits strong positive cooperativity (H = 1.9) toward all-trans-retinaldehyde; mouse ALDH6 has similar kinetic parameters. Expression constructs can confer 1000-fold increased sensitivity to retinoic acid receptor-dependent signaling from retinol in transient transfections experiments. The localization of ALDH6 to the developing sensory neuroepithelia of the eye, nose, and ear and discreet sites within the CNS suggests a role for RA signaling during primary neurogenesis at these sites.  相似文献   

8.
A method for determining human mitochondrial aldehyde dehydrogenase (ALDH2) genotypes was developed. Two 21-base synthetic oligonucleotides, one complementary to the usual ALDH2(1) gene and the other complementary to the atypical ALDH2(2) gene, were used as specific probes for in-gel hybridization analysis of human genomic DNA from either peripheral blood cells or livers. Under appropriate hybridization conditions, these two probes can hybridize to their specific complementary alleles and thus allow the genotyping of the ALDH2 locus.  相似文献   

9.
Although Gluconobacter oxydans can convert 1,2-propanediol to d-(−)-lactic acid, the enzyme(s) responsible for the conversion has remain unknown. In this study, the membrane-bound alcohol dehydrogenase (ADH) of Gluconobacter oxydans DSM 2003 was purified and confirmed to be essential for the process of d-(−)-lactic acid production by gene knockout and complementation studies. A 25 percent decrease in d-(−)-lactic acid production was found for the aldehyde dehydrogenase (ALDH) deficient strain of G. oxydans DSM 2003, indicating that this enzyme is involved in the reaction but not necessary. It is the first report that reveals the function of ADH and ALDH in the biooxidation of 1,2-propanediol to d-(−)-lactic acid by G. oxydans DSM 2003.  相似文献   

10.
A reinvestigation of the reactions leading to arsonolipids (2,3-diacyloxypropylarsonic acids) has been carried out in order to understand why the yields of their preparation were only moderate, although they are better than those reported for 2,3-diacyloxypropylphosphonic acid (phosphotidic acid). Thus, the reaction of glycidol and of 3-chloro-1,2-propanediol with alkaline sodium arsenite, "Na3AsO3", gives the desired product, 2,3-dihydroxypropylarsonic acid, and approximately 10% of an arsenic-containing glycerol dimer which is removed during the preparation of these arsonolipids. The step which is mainly responsible for the diminished yields is due to the reaction of the -As(SPh)2 or -AsO3H- precursor with the activated acid chlorides or carboxylic acid anhydrides to give an intermediate which cyclizes with the primary hydroxy group of the 2,3-dihydroxypropyl moiety. This cyclization does not allow the primary hydroxy group to be acylated. Such cyclization could not be avoided with RCOCl/py, (RCO)2O/DMAP, or RCOOH/DCC/DMAP acylating systems.  相似文献   

11.
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H(2)O(2)) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation.  相似文献   

12.
The enzyme 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (2,3-diDHB dehydrogenase, hereafter Ent A), the product of the enterobactin biosynthetic gene entA, catalyzes the NAD(+)-dependent oxidation of the dihydroaromatic substrate 2,3-dihydro-2,3-dihydroxybenzoate (2,3-diDHB) to the aromatic catecholic product 2,3-dihydroxybenzoate (2,3-DHB). The catechol 2,3-DHB is one of the key siderophore units of enterobactin, a potent iron chelator secreted by Escherichia coli. To probe the reaction mechanism of this oxidation, a variety of 2,3-diDHB analogues were synthesized and tested as substrates. Specifically, we set out to elucidate both the regio- and stereospecificity of alcohol oxidation as well as the stereochemistry of NAD+ reduction. Of those analogues tested, only those with a C3-hydroxyl group (but not a C2-hydroxyl group) were oxidized to the corresponding ketone products. Reversibility of the Ent A catalyzed reaction was demonstrated with the corresponding NADH-dependent reduction of 3-ketocyclohexane- and cyclohexene-1-carboxylates but not the 2-keto compounds. These results establish that Ent A functions as an alcohol dehydrogenase to specifically oxidize the C3-hydroxyl group of 2,3-diDHB to produce the corresponding 2-hydroxy-3-oxo-4,6-cyclohexadiene-1-carboxylate (Scheme II) as a transient species that undergoes rapid aromatization to give 2,3-DHB. Stereospecificity of the C3 allylic alcohol group oxidation was confirmed to be 3R in a 1R,3R dihydro substrate, 3, and hydride transfer occurs to the si face of enzyme-bound NAD+.  相似文献   

13.
One of the metabolic fates of 3-deoxyglucosone, a product of protein deglycation and a potent glycating agent, is to be oxidized to 2-keto-3-deoxygluconate, but the enzyme that catalyzes this reaction is presently unknown. Starting from human erythrocytes, which are known to convert 3-deoxyglucosone to 2-keto-3-deoxygluconate, we have purified to near homogeneity a NAD-dependent dehydrogenase that catalyzes this last reaction at neutral pH. Sequencing of a 55 kDa band co-eluting with the enzymatic activity in the last step indicated that it corresponded to aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme known to catalyze the oxidation of retinaldehyde to retinoic acid. Overexpression of human ALDH1A1 in HEK cells led to a more than 20-fold increase in 3-deoxyglucosone dehydrogenase activity. In mouse tissues 3-deoxyglucosone dehydrogenase activity was highest in liver, intermediate in lung and testis, and negligible or undetectable in other tissues, in agreement with the tissue distribution of ALDH1A1 mRNA. 3-deoxyglucosone dehydrogenase activity was undetectable in tissues from ALDH1A1(-/-) mice. ALDH1A1 appears therefore to be the major if not the only enzyme responsible for the oxidation of 3-deoxyglucosone to 2-keto-3-deoxygluconate. The urinary excretion of 2-keto-3-deoxygluconate amounted to 16.7 micromol/g creatinine in humans, indicating that 3-deoxyglucosone may be quantitatively a more important substrate than retinaldehyde for ALDH1A1.  相似文献   

14.
Previous gene array data from our laboratory identified the retinoic acid (RA) biosynthesis enzyme aldehyde dehydrogenase 1A3 (ALDH1A3) as a putative androgen-responsive gene in human prostate cancer epithelial (LNCaP) cells. In the present study, we attempted to identify if any of the three ALDH1A/RA synthesis enzymes are androgen responsive and how this may affect retinoid-mediated effects in LNCaP cells. We demonstrated that exposure of LNCaP cells to the androgen dihydrotestosterone (DHT) results in a 4-fold increase in ALDH1A3 mRNA levels compared with the untreated control. The mRNA for two other ALDH1A family members, ALDH1A1 and ALDH1A2, were not detected and not induced by DHT in LNCaP cells. Inhibition of androgen receptor (AR) with both the antiandrogen bicalutamide and small interfering RNA for AR support that ALDH1A3 regulation by DHT is mediated by AR. Furthermore, specific inhibition of the extracellular signal-regulated kinase and Src family of kinases with PD98059 and PP1 supports that AR's regulation of ALDH1A3 occurs by the typical AR nuclear-translocation cascade. Consistent with an increase in ALDH1A3 mRNA, DHT-treated LNCaP cells showed an 8-fold increase in retinaldehyde-dependent NAD(+) reduction compared with control. Lastly, treatment of LNCaP with all-trans retinal (RAL) in the presence of DHT resulted in significant up-regulation of the RA-inducible, RA-metabolizing enzyme CYP26A1 mRNA compared with RAL treatment alone. Taken together, these data suggest that (i) the RA biosynthesis enzyme ALDH1A3 is androgen responsive and (ii) DHT up-regulation of ALDH1A3 can increase the oxidation of retinal to RA and indirectly affect RA bioactivity and metabolism.  相似文献   

15.
Aldehyde dehydrogenase (ALDH) activity was measured in brain and liver of rainbow trout by using 3,4-dihydroxyphenylacetaldehyde (DOPAL, the biogenic aldehyde derived from dopamine) as the substrate. The amount of the corresponding acid produced was quantified by high-performance liquid chromatography with electrochemical detection. Both in brain and liver, the ALDH activity showed a high affinity for the substrate with an apparent Km of 3.7 microM in brain and 2.4 microM in liver. The kinetic experiments with brain ALDH also indicated the presence of an isozyme with a low affinity for DOPAL with a Km around 150 microM. The Vmax of the liver ALDH activity varied between 179 and 536 nmol/min.g, i.e., about 25-75 times higher than that of the low-Km activity in brain. The ALDH activity showed a maximum around pH 8.5, it was stimulated by Mg2+, and disulfiram was found to be a potent inhibitor of the enzyme. The results suggested that the majority of the ALDH activity was located in mitochondria (60-70% with regard to the brain and 70-80% with regard to the liver), while the remaining activity appeared to be cytosolic in both organs. No microsomal ALDH activity could be found.  相似文献   

16.
Mitsuhiko Satô 《Phytochemistry》1976,15(11):1665-1667
In the presence of 5 mM 2,3-dihydroxybenzaldehyde, the monomeric phenolase (MW 36000) of spinach chloroplasts is completely converted to its dimer within 6 hr without significant change in activity. The aldehyde at concentrations higher than 0.25 mM could bring about this conversion after 18 hr treatment. The association of the two monomers becomes tighter with increasing concentration of the aldehyde. The dimer gave rise to a higher MW protein after freezing briefly. Several mono- and dihydroxybenzaldehydes, 2,3-dihydroxybenzoic acid, and o-vanillin did not produce the dimer.  相似文献   

17.
A putative aldehyde dehydrogenase (ALDH) gene, ybcD (gene locus b1467), was identified in the genome sequence of Bacillus licheniformis ATCC 14580. B. licheniformis ALDH (BlALDH) encoded by ybcD consists of 488 amino acid residues with a molecular mass of approximately 52.7 kDa. The coding sequence of ybcD gene was cloned in pQE-31, and functionally expressed in recombinant Escherichia coli M15. BlALDH had a subunit molecular mass of approximately 53 kDa and the molecular mass of the native enzyme was determined to be 220 kDa by FPLC, reflecting that the oilgomeric state of this enzyme is tetrameric. The temperature and pH optima for BlALDH were 37°C and 7.0, respectively. In the presence of either NAD+ or NADP+, the enzyme could oxidize a number of aliphatic aldehydes, particularly C3- and C5-aliphatic aldehyde. Steady-state kinetic study revealed that BlALDH had a K M value of 0.46 mM and a k cat value of 49.38/s when propionaldehyde was used as the substrate. BlALDH did not require metal ions for its enzymatic reaction, whereas the dehydrogenase activity was enhanced by the addition of disulfide reductants, 2-mercaptoethanol and dithiothreitol. Taken together, this study lays a foundation for future structure–function studies with BlALDH, a typical member of NAD(P)+-dependent aldehyde dehydrogenases.  相似文献   

18.
In order for nuclear retinoic acid receptors to mediate retinoid signaling, the ligand retinoic acid must first be produced from its vitamin A precursor retinal. Biochemical studies have shown that retinal can be metabolized in vitro to retinoic acid by members of the aldehyde dehydrogenase enzyme family, including ALDH1. Here we describe the first direct evidence that ALDH1 plays a physiological role in retinoic acid synthesis by analysis of retinoid signaling in Xenopus embryos, which have plentiful stores of maternally derived retinal. The Xenopus ALDH1 gene was cloned and shown to be highly conserved with chick and mammalian homologs. Xenopus ALDH1 was not expressed at blastula and gastrula stages, but was expressed at the neurula stage. We used a retinoic acid bioassay to demonstrate that retinoic acid is normally undetectable in embryos from fertilization to the initial gastrula stage, but that a tremendous increase in retinoic acid occurs during neurulation when ALDH1 is first expressed. Overexpression of ALDH1 by injection of Xenopus embryos with mRNAs encoding the mouse, chick or Xenopus ALDH1 homologs induced high levels of retinoic acid detection during the blastula stage. Thus, premature expression of ALDH1 stimulates premature synthesis of retinoic acid. These findings reveal an important conserved role for ALDH1 in retinoic acid synthesis in vivo, and demonstrate that conversion of retinoids from the aldehyde form to the carboxylic acid form is a crucial regulatory step in retinoid signaling.  相似文献   

19.
Liver mitochondrial aldehyde dehydrogenase 2 (ALDH2) enzyme is responsible for the rapid conversion of acetaldehyde to acetic acid. ALDH2 (E487K) polymorphism results in an inactive allele (ALDH2*2) which cause dysfunctional acetaldehyde metabolism. The 3D structure of an enzyme is crucial to its functionality and a disruption in its structural integrity could result in its metabolic inefficiency and dysfunctionality. Allosteric targeting of polymorphs could facilitate the restoration of wildtype functionalities in ALDH2 polymorphs and serve as an advancement in the treatment of associated diseases. Therefore, structural insights into ALDH2*2 polymorph could reveal the varying degree of alterations which occur at its critical domains and accounts for enzymatic dysfunctionality. In this study, we report the structural characterization of ALDH2*2 polymorph and its critical domains using computational tools. Our findings revealed that the polymorph exhibited significant alterations in stability and flexibility at the catalytic and co-enzyme-binding domain. Moreover, there was an increase in the solvent-exposed surface residues and this indicates structural perturbations. Analysis of the interaction network at ALDH2*2 catalytic domain revealed residual displacement and interaction loss when compared to the wildtype thereby providing insight into the catalytic inefficiency of the polymorph. Interestingly, perturbations induced by ALDH2 polymorphism involves the re-orientation of surface residues, which resulted in the formation of surface exposed pockets. These identified pockets could be potential sites for allosteric targeting. The findings from this study will aid the design of novel site-specific small molecule reactivators with the propensity of restoring wildtype activities for treatment of polymorphic ALDH2 related diseases.  相似文献   

20.
Acetobacter pasteurianus, an obligately oxidative bacterium, is the first organism shown to utilize pyruvate decarboxylase (PDC) as a central enzyme for oxidative metabolism. In plants, yeast, and other bacteria, PDC functions solely as part of the fermentative ethanol pathway. During the growth of A. pasteurianus on lactic acid, the central intermediate pyruvate is cleaved to acetaldehyde and CO(2) by PDC. Acetaldehyde is subsequently oxidized to its final product, acetic acid. The presence of the PDC enzyme in A. pasteurianus was confirmed by zymograms stained for acetaldehyde production, enzyme assays using alcohol dehydrogenase as the coupling enzyme, and by cloning and characterization of the pdc operon. A. pasteurianus pdc was also expressed in recombinant Escherichia coli. The level of PDC activity was regulated in response to growth substrate, highest with lactic acid and absent with mannitol. The translated PDC sequence (548 amino acids) was most similar to that of Zymomonas mobilis, an obligately fermentative bacterium. A second operon ( aldA) was also found which is transcribed divergently from pdc. This operon encodes a putative aldehyde dehydrogenase (ALD2; 357 amino acids) related to class III alcohol dehydrogenases and most similar to glutathione-dependent formaldehyde dehydrogenases from alpha-Proteobacteria and Anabeana azollae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号