首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cortical representation of swallow-related motor tasks has not been systematically investigated. In this study, we elucidated and compared these cortical representations to those of volitional swallow using block-trial and single-trial methods. Fourteen volunteers were studied by functional magnetic resonance imaging. Cortical activation during both swallowing and swallow-related motor tasks that can be performed independent of swallowing, such as jaw clenching, lip pursing, and tongue rolling, was found in four general areas: the anterior cingulate, motor/premotor cortex, insula, and occipital/parietal region corresponding to Brodmann's areas 7, 19, and 31. Regions of activity, volume of activated voxels, and increases in signal intensity were found to be similar between volitional swallow and swallow-related motor tasks. These findings, using both block-trial and single-trial techniques, suggest that cerebral cortical regions activated during swallowing may not be specific to deglutitive function.  相似文献   

2.
Functional MRI (fMRI) studies have demonstrated that a number of brain regions (cingulate, insula, prefrontal, and sensory/motor cortices) display blood oxygen level-dependent (BOLD) positive activity during swallow. Negative BOLD activations and reproducibility of these activations have not been systematically studied. The aim of our study was to investigate the reproducibility of swallow-related cortical positive and negative BOLD activity across different fMRI sessions. We studied 16 healthy volunteers utilizing an fMRI event-related analysis. Individual analysis using a general linear model was used to remove undesirable signal changes correlated with motion, white matter, and cerebrospinal fluid. The group analysis used a mixed-effects multilevel model to identify active cortical regions. The volume and magnitude of a BOLD signal within each cluster was compared between the two study sessions. All subjects showed significant clustered BOLD activity within the known areas of cortical swallowing network across both sessions. The cross-correlation coefficient of percent fMRI signal change and the number of activated voxels across both positive and negative BOLD networks were similar between the two studies (r ≥ 0.87, P < 0.0001). Swallow-associated negative BOLD activity was comparable to the well-defined "default-mode" network, and positive BOLD activity had noticeable overlap with the previously described "task-positive" network. Swallow activates two parallel cortical networks. These include a positive and a negative BOLD network, respectively, correlated and anticorrelated with swallow stimulus. Group cortical activity maps, as well as extent and amplitude of activity induced by volitional swallowing in the cortical swallowing network, are reproducible between study sessions.  相似文献   

3.
Semantic memory and the brain: structure and processes   总被引:29,自引:0,他引:29  
Recent functional brain imaging studies suggest that object concepts may be represented, in part, by distributed networks of discrete cortical regions that parallel the organization of sensory and motor systems. In addition, different regions of the left lateral prefrontal cortex, and perhaps anterior temporal cortex, may have distinct roles in retrieving, maintaining and selecting semantic information.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a rare disease causing degeneration of the upper and lower motor neuron. Involvement of the bulbar motor neurons often results in fast progressive dysphagia. While cortical compensation of dysphagia has been previously shown in stroke patients, this topic has not been addressed in patients suffering from ALS. In the present study, we investigated cortical activation during deglutition in two groups of ALS patients with either moderate or severe dysphagia. Whole-head MEG was employed on fourteen patients with sporadic ALS using a self-paced swallowing paradigm. Data were analyzed by means of time-frequency analysis and synthetic aperture magnetometry (SAM). Group analysis of individual SAM data was performed using a permutation test. We found a reduction of cortical swallowing related activation in ALS patients compared to healthy controls. Additionally a disease-related shift of hemispheric lateralization was observed. While healthy subjects showed bilateral cortical activation, the right sensorimotor cortex was predominantly involved in ALS patients. Both effects were even stronger in the group of patients with severe dysphagia. Our results suggest that bilateral degeneration of the upper motor neuron in the primary motor areas also impairs further adjusted motor areas, which leads to a strong reduction of 'swallowing related' cortical activation. While both hemispheres are affected by the degeneration a relatively stronger activation is seen in the right hemisphere. This right hemispheric lateralization of volitional swallowing observed in this study may be the only sign of cortical plasticity in dysphagic ALS patients. It may demonstrate compensational mechanisms in the right hemisphere which is known to predominantly coordinate the pharyngeal phase of deglutition. These results add new aspects to our understanding of the pathophysiology of dysphagia in ALS patients and beyond. The compensational mechanisms observed could be relevant for future research in swallowing therapies.  相似文献   

5.
We investigated the role of the cerebral cortex, particularly the face/tongue area of the primary sensorimotor (SMI) cortex (face/tongue) and supplementary motor area (SMA), in volitional swallowing by recording movement-related cortical potentials (MRCPs). MRCPs with swallowing and tongue protrusion were recorded from scalp electrodes in eight normal right-handed subjects and from implanted subdural electrodes in six epilepsy patients. The experiment by scalp EEG in normal subjects revealed that premovement Bereitschaftspotentials (BP) activity for swallowing was largest at the vertex and lateralized to either hemisphere in the central area. The experiment by epicortical EEG in patients confirmed that face/tongue SMI and SMA were commonly involved in swallowing and tongue protrusion with overlapping distribution and interindividual variability. BP amplitude showed no difference between swallowing and tongue movements, either at face/tongue SMI or at SMA, whereas postmovement potential (PMP) was significantly larger in tongue protrusion than in swallowing only at face/tongue SMI. BP occurred earlier in swallowing than in tongue protrusion. Comparison between face/tongue SMI and SMA did not show any difference with regard to BP and PMP amplitude or BP onset time in either task. The preparatory role of the cerebral cortex in swallowing was similar to that in tongue movement, except for earlier activation in swallowing. Postmovement processing of swallowing was lesser than that of tongue movement in face/tongue SMI; probably suggesting that the cerebral cortex does not play a significant role in postmovement processing of swallowing. SMA plays a supplementary role to face/tongue SMI both in swallowing and tongue movements.  相似文献   

6.
The external anal sphincter (EAS) plays a critical role in maintaining fecal continence; however, cerebral cortical control of voluntary EAS contraction is not completely understood. Our aims were to determine the cortical areas associated with voluntary EAS contraction and to determine the effect of two levels of sphincter contraction effort on brain activity. Seventeen asymptomatic adults (ages 21-48, 9 male) were studied using functional magnetic resonance imaging (fMRI) to detect brain activity. Studies were done in two stages. In stage 1 (10 subjects, 5 male), anal sphincter pressure was monitored from a catheter-affixed bag. Subjects performed maximal and submaximal EAS contractions during two fMRI scanning sessions consisting of alternating 10-s intervals of sustained contraction and rest. In stage 2 studies, seven subjects (4 male) performed only maximum effort sphincter contractions without a catheter. EAS contraction was associated with multifocal fMRI activity in sensory/motor, anterior cingulate, prefrontal, parietal, occipital, and insular regions. Total cortical activity volume was significantly larger (P < 0.05) for maximal (5,175 +/- 720 microl) compared with submaximal effort contractions (2,558 +/- 306 microl). Similarly, percent fMRI signal change was significantly higher (P < 0.05) for maximal (4.8 +/- 0.1%) compared with submaximal effort contractions (2.2 +/- 0.1%). Cortical region-of-interest analysis showed the incidence of insular activation to be more common in women compared with men. Other cortical regions showed no such gender differences. fMRI activity detected in stage 2 showed similar regions of cortical activation to those of the stage 1 study. Willful contraction of the EAS is associated with multifocal cerebral cortical activity. The volume and intensity of cerebral cortical activation is commensurate with the level of contractile effort.  相似文献   

7.
Motor learning in man: A review of functional and clinical studies   总被引:1,自引:0,他引:1  
This chapter reviews results of clinical and functional imaging studies which investigated the time-course of cortical and subcortical activation during the acquisition of motor a skill. During the early phases of learning by trial and error, activation in prefrontal areas, especially in the dorsolateral prefrontal cortex, is has been reported. The role of these areas is presumably related to explicit working memory and the establishment of a novel association between visual cues and motor commands. Furthermore, motor associated areas of the right hemisphere and distributed cerebellar areas reveal strong activation during the early motor learning. Activation in superior-posterior parietal cortex presumably arises from visuospatial processes, while sensory feedback is coded in the anterior-inferior parietal cortex and the neocerebellar structures. With practice, motor associated areas of the left-hemisphere reveal increased activity. This shift to the left hemisphere has been observed regardless of the hand used during training, indicating a left-hemispheric dominance in the storage of visuomotor skills. Concerning frontal areas, learned actions of sequential character are represented in the caudal part of the supplementary motor area (SMA proper), whereas the lateral premotor cortex appears to be responsible for the coding of the association between visuo-spatial information and motor commands. Functional imaging studies which investigated the activation patterns of motor learning under implicit conditions identified for the first, a motor circuit which includes lateral premotor cortex and SMA proper of the left hemisphere and primary motor cortex, for the second, a cognitive loop which consists of basal ganglia structures of the right hemisphere. Finally, activity patterns of intermanual transfer are discussed. After right-handed training, activity in motor associated areas maintains during performance of the mirror version, but is increased during the performance of the original-oriented version with the left hand. In contrary, increased activity during the mirror reversed action, but not during the original-oriented performance of the untrained right hand is observed after left-handed training. These results indicate the transfer of acquired right-handed information which reflects the mirror symmetry of the body, whereas spatial information is mainly transferred after left-handed training. Taken together, a combined approach of clinical lesion studies and functional imaging is a promising tool for identifying the cerebral regions involved in the process of motor learning and provides insight into the mechanisms underlying the generalisation of actions.  相似文献   

8.
Extensive evidence indicates that current and recently abstinent cocaine abusers compared to drug-naïve controls have decreased grey matter in regions such as the anterior cingulate, lateral prefrontal and insular cortex. Relatively little is known, however, about the persistence of these deficits in long-term abstinence despite the implications this has for recovery and relapse. Optimized voxel based morphometry was used to assess how local grey matter volume varies with years of drug use and length of abstinence in a cross-sectional study of cocaine users with various durations of abstinence (1–102 weeks) and years of use (0.3–24 years). Lower grey matter volume associated with years of use was observed for several regions including anterior cingulate, inferior frontal gyrus and insular cortex. Conversely, higher grey matter volumes associated with abstinence duration were seen in non-overlapping regions that included the anterior and posterior cingulate, insular, right ventral and left dorsal prefrontal cortex. Grey matter volumes in cocaine dependent individuals crossed those of drug-naïve controls after 35 weeks of abstinence, with greater than normal volumes in users with longer abstinence. The brains of abstinent users are characterized by regional grey matter volumes, which on average, exceed drug-naïve volumes in those users who have maintained abstinence for more than 35 weeks. The asymmetry between the regions showing alterations with extended years of use and prolonged abstinence suggest that recovery involves distinct neurobiological processes rather than being a reversal of disease-related changes. Specifically, the results suggest that regions critical to behavioral control may be important to prolonged, successful, abstinence.  相似文献   

9.
Neurophysiological studies on non-human primates have provided a large body of information on the response patterns of neurons in primary motor cortex during volitional motor tasks. Rather than finding a single simple pattern of activity in primary motor cortex neurons, these studies illustrate that neural activity in this area reflects many different types of information, including spatial goals, hand motion, joint motion, force output and electromyographic activity. This richness in the response characteristics of neurons makes estimates of any single variable on motor performance from population signals imprecise and prone to errors. It initially seems puzzling that so many different types of information are represented in primary motor cortex. However, such richness in neural responses reflects its important role in converting high-level behavioral goals generated in other cortical regions into complex spatiotemporal patterns to control not only alpha-motoneuron activity but also other features of spinal processing.  相似文献   

10.
目的:探讨长程颅内电极监测及电刺激方法,在感觉运动区皮质发育不良的难治性癫痫外科手术评估中的意义。方法:筛选MRI提示的皮质发育不良区域与重要功能区-感觉运动区位置关系密切的11例难治性癫痫患者,且头皮长程视频脑电监测及PET检查也初步提示癫痫发作与皮质发育不良所在脑区有关,在可疑脑区放置颅内电极,然后进行颅内电极长程视频脑电监测及电刺激检测,对癫痫起源位置及功能区定位,明确癫痫发作起源区域与感觉运动功能区的解剖学关系,在定位结果指导下进行切除术。结果:11例中3例位于左侧半球,8例位于右侧半球,11例感觉运动功能区皮质分布均存在不同程度变异,7例癫痫发作起源区域与感觉运动功能区一定范围重叠,其中5例与感觉区重叠,该5例切除了起源区域与发作有关的部分感觉区,2例部分致痫灶与运动区重叠,该2例仅切除了除与发作有关的运动区以外的癫痫起源区域,4例癫痫发作起源区域与感觉运动功能区相对独立,该4例完全切除癫痫发作起源区域;手术后6例患者发作消失,2例患者发作频率减少90%以上,1例癫痫发作控制无效,2例患者发生部分感觉缺失,但对生活无明显影响。结论:在皮质发育不良的癫痫患者中,有较高比例的病人伴有功能区皮层分布的变异,长程颅内电极监测及电刺激能够实现癫痫起源区域及功能区精确定位,明确功能区变异情况,对于指导病灶切除,避免损伤功能区皮质,减少术后并发症具有重要意义。  相似文献   

11.
Somatic and visceral sensation, including pain perception, can be studied noninvasively in humans with functional brain imaging techniques. Positron emission tomography and functional magnetic resonance imaging have identified a series of cerebral regions involved in the processing of somatic pain, including the anterior cingulate, insular, prefrontal, inferior parietal, primary and secondary somatosensory, and primary motor and premotor cortices, the thalamus, hypothalamus, brain stem, and cerebellum. Experimental evidence supports possible specific roles for individual structures in processing the various dimensions of pain, such as encoding of affect in the anterior cingulate cortex. Visceral sensation has been examined in the setting of myocardial ischemia, distension of hollow viscera, and esophageal acidification. Although knowledge regarding somatic sensation is more extensive than the information available for visceral sensation, important similarities have emerged between cerebral representations of somatic and visceral pain.  相似文献   

12.
梁亮  徐樊  井哓荣  王超  梁秦川  郭恒  孟强  李焕发  张华  高国栋 《生物磁学》2011,(8):1498-1501,1525
目的:探讨长程颅内电极监测及电刺激方法,在感觉运动区皮质发育不良的难治性癫痫外科手术评估中的意义。方法:筛选MRI提示的皮质发育不良区域与重要功能区-感觉运动区位置关系密切的11例难治性癫痫患者,且头皮长程视频脑电监测及PET检查也初步提示癫痫发作与皮质发育不良所在脑区有关,在可疑脑区放置颅内电极,然后进行颅内电极长程视频脑电监测及电刺激检测,对癫痫起源位置及功能区定位,明确癫痫发作起源区域与感觉运动功能区的解剖学关系,在定位结果指导下进行切除术。结果:11例中3例位于左侧半球,8例位于右侧半球,11例感觉运动功能区皮质分布均存在不同程度变异,7例癫痫发作起源区域与感觉运动功能区一定范围重叠,其中5例与感觉区重叠,该5例切除了起源区域与发作有关的部分感觉区,2例部分致痫灶与运动区重叠,该2例仅切除了除与发作有关的运动区以外的癫痫起源区域,4例癫痫发作起源区域与感觉运动功能区相对独立,该4例完全切除癫痫发作起源区域;手术后6例患者发作消失,2例患者发作频率减少90%以上,1例癫痫发作控制无效,2例患者发生部分感觉缺失,但对生活无明显影响。结论:在皮质发育不良的癫痫患者中,有较高比例的病人伴有功能区皮层分布的变异,长程颅内电极监测及电刺激能够实现癫痫起源区域及功能区精确定位,明确功能区变异情况,对于指导病灶切除,避免损伤功能区皮质,减少术后并发症具有重要意义。  相似文献   

13.
Ku Y  Ohara S  Wang L  Lenz FA  Hsiao SS  Bodner M  Hong B  Zhou YD 《PloS one》2007,2(8):e771
Our previous studies on scalp-recorded event-related potentials (ERPs) showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA) to the ERP data, we found independent components (ICs) located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC) and the primary somatosensory cortex (SI). The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex) that are involved in sensation and perception of various stimuli.  相似文献   

14.
In the present study, we compared brain activations produced by pleasant, neutral and unpleasant touch, to the anterior lateral surface of lower leg of human subjects. It was found that several brain regions, including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), as well as contralateral middle and posterior insula cortex were commonly activated under the three touch conditions. In addition, pleasant and unpleasant touch conditions shared a few brain regions including the contralateral posterior parietal cortex (PPC) and bilateral premotor cortex (PMC). Unpleasant touch specifically activated a set of pain-related brain regions such as contralateral supplementary motor area (SMA) and dorsal parts of bilateral anterior cingulated cortex, etc. Brain regions specifically activated by pleasant touch comprised bilateral lateral orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), intraparietal cortex and left dorsal lateral prefrontal cortex (DLPFC). Using a novel functional connectivity model based on graph theory, we showed that a series of brain regions related to affectively different touch had significant functional connectivity during the resting state. Furthermore, it was found that such a network can be modulated between affectively different touch conditions.  相似文献   

15.
Using polyclonal antibody against dopamine D4 receptor we investigated cortical distribution of D4 receptors, with the special emphasis on regions of the prefrontal cortex. Prefrontal cortex is regarded as a target for neuroleptic drugs, and engaged in the regulation of the psychotic effects of various substances used in the experimental modeling of schizophrenia. Western blot analysis performed on samples from the rat cingulate, parietal, piriform cortices and also striatum revealed that antibody recognized one main band of approximately 40 kD, which corresponds to the predicted molecular weight of D4 receptor protein. In immunocytochemical studies we found D4 receptor-positive neurons in all regions of prefrontal cortex (cingulate, agranular/insular and orbital cortices) and all cortical regions adjacent to prefrontal cortex, such as frontal, parietal and piriform cortex. Substantial number of D4 receptor-positive neurons has also been observed within the striatum and nucleus accumbens. In general, a clear stratification of the D4 receptor-positive neurons was observed in the cortex with the highest density seen in layers II/III and V/VI. D4 immunopositive material was also found in the dendritic processes, particularly clearly visible in the layer II/III. At the cellular level D4 receptor immunoreactivity was seen predominantly on the periphery of the cell body, but a certain population of neurons with clear cytoplasmatic localization was also identified. In addition to cortical distribution of D4 receptor-positive neurons we tried also to define types of neurons expressing D4 receptor protein. In double-labeling experiments, D4 receptor protein was found in nonphosphorylated neurofilament H-positive, calbindin-D28k-positive, as well as parvalbumin-positive cells. Since, used proteins are markers of certain populations of pyramidal neurons and GABA-ergic interneurons, respectively, our data indicate that D4 receptors are located on cortical pyramidal output neurons and their dendritic processes as well as on interneurons. Above localization indicates that D4 receptors are not only directly influencing excitability of cortical inter- and output neurons but also might be engaged in dendritic spatial and temporal integration, required for the generation of axonal messages. Additionally, our data show that D4 receptors are widely distributed throughout the cortex of rat brain, and that their cortical localization exceeds the localization of dopaminergic terminals.  相似文献   

16.
It is thought that the prefrontal cortex (PFC) subserves cognitive control processes by coordinating the flow of information in the cerebral cortex. In the network of cortical areas the central position of the PFC makes difficult to dissociate processing and the cognitive function mapped to this region, especially when using whole brain imaging techniques, which can detect frequently activated regions. Accordingly, the present study showed particularly high rate of increase of published studies citing the PFC and imaging as compared to other fields of the neurosciences on the PubMed. Network measures used to characterize the role of the areas in signal flow indicated specialization of the different regions of the PFC in cortical processing. Notably, areas of the dorsolateral PFC and the anterior cingulate cortex, which received the highest number of citations, were identified as global convergence points in the network. These prefrontal regions also had central position in the dominant cluster consisted exclusively by the associational areas of the cortex. We also present findings relevant to models suggesting that control processes of the PFC are depended on serial processing, which results in bottleneck effects. The findings suggest that PFC is best understood via its role in cortical information processing.  相似文献   

17.
Neuronal plasticity along the pathway for sensory transmission including the spinal cord and cortex plays an important role in chronic pain, including inflammatory and neuropathic pain. While recent studies indicate that microglia in the spinal cord are involved in neuropathic pain, a systematic study has not been performed in other regions of the central nervous system (CNS). In the present study, we used heterozygous Cx3cr1 GFP/+mice to characterize the morphological phenotypes of microglia following common peroneal nerve (CPN) ligation. We found that microglia showed a uniform distribution throughout the CNS, and peripheral nerve injury selectively activated microglia in the spinal cord dorsal horn and related ventral horn. In contrast, microglia was not activated in supraspinal regions of the CNS, including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), primary and secondary somatosensory cortex (S1 and S2), insular cortex (IC), amygdala, hippocampus, periaqueductal gray (PAG) and rostral ventromedial medulla (RVM). Our results provide strong evidence that nerve injury primarily activates microglia in the spinal cord of adult mice, and pain-related cortical plasticity is likely mediated by neurons.  相似文献   

18.
The corpus callosum (CC) is the largest commissural white matter tract in mammalian brains, connecting homotopic and heterotopic regions of the cerebral cortex. Knowledge of the distribution of callosal fibers projecting into specific cortical regions has important implications for understanding the evolution of lateralized structures and functions of the cerebral cortex. No comparisons of CC topography in humans and great apes have yet been conducted. We investigated the topography of the CC in 21 chimpanzees using high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Tractography was conducted based on fiber assignment by continuous tracking (FACT) algorithm. We expected chimpanzees to display topographical organization similar to humans, especially concerning projections into the frontal cortical regions. Similar to recent studies in humans, tractography identified five clusters of CC fibers projecting into defined cortical regions: prefrontal; premotor and supplementary motor; motor; sensory; parietal, temporal and occipital. Significant differences in fractional anisotropy (FA) were found in callosal regions, with highest FA values in regions projecting to higher-association areas of posterior cortical (including parietal, temporal and occipital cortices) and prefrontal cortical regions (p<0.001). The lowest FA values were seen in regions projecting into motor and sensory cortical areas. Our results indicate chimpanzees display similar topography of the CC as humans, in terms of distribution of callosal projections and microstructure of fibers as determined by anisotropy measures.  相似文献   

19.
Delayed onset muscle soreness (DOMS) is a subacute pain state arising 24–48 hours after a bout of unaccustomed eccentric muscle contractions. Functional magnetic resonance imaging (fMRI) was used to examine the patterns of cortical activation arising during DOMS-related pain in the quadriceps muscle of healthy volunteers evoked by either voluntary contraction or physical stimulation. The painful movement or physical stimulation of the DOMS-affected thigh disclosed widespread activation in the primary somatosensory and motor (S1, M1) cortices, stretching far beyond the corresponding areas somatotopically related to contraction or physical stimulation of the thigh; activation also included a large area within the cingulate cortex encompassing posteroanterior regions and the cingulate motor area. Pain-related activations were also found in premotor (M2) areas, bilateral in the insular cortex and the thalamic nuclei. In contrast, movement of a DOMS-affected limb led also to activation in the ipsilateral anterior cerebellum, while DOMS-related pain evoked by physical stimulation devoid of limb movement did not.  相似文献   

20.
Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a ‘resized’ virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号