首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Minor aberrant pathways of cholesterol biosynthesis normally produce only trace levels of abnormal sterol metabolites but may assume major importance when an essential biosynthetic step is blocked. Cholesta-5,8-dien-3beta-ol, its Delta(5,7) isomer, and other noncholesterol sterols accumulate in subjects with the Smith-Lemli-Opitz syndrome (SLOS), a severe developmental disorder caused by a defective Delta(7) sterol reductase gene. We have explored the formation and metabolism of unsaturated sterols relevant to SLOS by incubating tritium-labeled Delta(5,8), Delta(6, 8), Delta(6,8(14)), Delta(5,8(14)), and Delta(8) sterols with rat liver preparations. More than 60 different incubations were carried out with washed microsomes or the 10,000 g supernatant under aerobic or anaerobic conditions; some experiments included addition of cofactors, fenpropimorph (a Delta(8);-Delta(7) isomerase inhibitor), and/or AY-9944 (a Delta(7) reductase inhibitor). The tritium-labeled metabolites from each incubation were identified by silver ion high performance liquid chromatography on the basis of their coelution with unlabeled authentic standards, as free sterols and/or acetate derivatives. The Delta(5,8) sterol was converted slowly to cholesterol via the Delta(5,7) sterol, which also slowly isomerized back to the Delta(5,8) sterol. The Delta(6,8) sterol was metabolized rapidly to cholesterol by an oxygen-requiring pathway via the Delta(7,9(11)), Delta(8), Delta(7), and Delta(5,7) sterols as well as by an oxygen-independent route involving initial isomerization to the Delta(5,7) sterol. The Delta(8) sterol was partially metabolized to Delta(5,8), Delta(6,8), Delta(7,9(11)), and Delta(5,7,9(11)) sterols when isomerization to Delta(7) was blocked.The combined results were used to formulate a scheme of normal and aberrant biosynthetic pathways that illuminate the origin and metabolic fate of abnormal sterols observed in SLOS and chondrodysplasia punctata.  相似文献   

2.
Smith-Lemli-Opitz syndrome (SLOS) is a hereditary disorder in which a defective gene encoding 7-dehydrocholesterol reductase causes the accumulation of noncholesterol sterols, such as 7- and 8-dehydrocholesterol. Using rigorous analytical methods in conjunction with a large collection of authentic standards, we unequivocally identified numerous noncholesterol sterols in 6 normal and 17 SLOS blood samples. Plasma or erythrocytes were saponified under oxygen-free conditions, followed by multiple chromatographic separations. Individual sterols were identified and quantitated by high performance liquid chromatography (HPLC), Ag(+)-HPLC, gas chromatography (GC), GC-mass spectrometry, and nuclear magnetic resonance. As a percentage of total sterol content, the major C(27) sterols observed in the SLOS blood samples were cholesterol (12;-98%), 7-dehydrocholesterol (0.4;-44%), 8-dehydrocholesterol (0.5;-22%), and cholesta-5,7,9(11)-trien-3beta-ol (0.02;-5%), whereas the normal blood samples contained <0.03% each of the three noncholesterol sterols. SLOS and normal blood contained similar amounts of lathosterol (0.05;-0.6%) and cholestanol (0.1;-0.4%) and approximately 0.003;-0.1% each of the Delta(8), Delta(8(14)), Delta(5,8(14)), Delta(5,24), Delta(6,8), Delta(6,8(14)), and Delta(7,24) sterols.The results are consistent with the hypothesis that the Delta(8(14)) sterol is an intermediate of cholesterol synthesis and indicate the existence of undescribed aberrant pathways that may explain the formation of the Delta(5,7,9(11)) sterol. 19-Norcholesta-5,7,9-trien-3beta-ol was absent in both SLOS and normal blood, although it was routinely observed as a GC artifact in fractions containing 8-dehydrocholesterol. The overall findings advance the understanding of SLOS and provide a methodological model for studying other metabolic disorders of cholesterol synthesis.  相似文献   

3.
The sterols of calcareous sponges (Calcarea, Porifera)   总被引:1,自引:0,他引:1  
Sponges are sessile suspension-feeding organisms whose internal phylogenetic relationships are still the subject of intense debate. Sterols may have the potential to be used as independent markers to test phylogenetic hypotheses. Twenty representative specimens of calcareous sponges (class Calcarea, phylum Porifera) with a broad coverage within both subclasses Calcinea and Calcaronea were analysed for their sterol content. Two major pseudohomologous series were found, accompanied by some additional sterols. The first series encompassing conventional C(27) to C(29)Delta(5,7,22) sterols represented the major sterols, with ergosterol (ergosta-5,7,22-trien-3beta-ol, C(28)Delta(5,7,22)) being most prominent in many species. The second series consisted of unusual C(27) to C(29)Delta(5,7,9(11),22) sterols. Cholesterol occurred sporadically, mostly in trace amounts. The sterol patterns did not resolve intraclass phylogenetic relationships, namely the distinction between the subclasses, Calcinea and Calcaronea. This pointed towards major calcarean lipid traits being established prior to the separation of subclasses. Furthermore, calcarean sterol patterns clearly differ from those found in Hexactinellida, whereas partial overlap occurred with some Demospongiae. Hence, sterols only partly reflect the phylogenetic separation of Calcarea from both of the other poriferan classes that was proposed by recent molecular work and fatty acid analyses.  相似文献   

4.
Mature and immature individuals of the deep-water detritus-feeder Benthodytes lingua Perrier and mature specimens of the mid-water detritus-feeders Stichopus tremulus (Gunnerus) and Mesothuria verrilli (Theel) have been analysed by gas chromatographic-mass spectrometric techniques for their component sterols. The results indicate a highly variable sterol and stanol composition amongst holothurians irrespective of water depth, probable diet or even life stage. It is suggested that the complex sterol mixtures found reflect specific structural requirements of holothurians for both component sterols and stanols.  相似文献   

5.
Mice with a targeted mutation of 3beta-hydroxysterol Delta(7)-reductase (Dhcr7) that cannot convert 7-dehydrocholesterol to cholesterol were used to identify the origin of fetal sterols. Because their heterozygous mothers synthesize cholesterol normally, virtually all sterols found in a Dhcr7 knockout fetus having a Delta(7) or a Delta(8) double bond must have been synthesized by the fetus itself but any cholesterol had to have come from the mother. Early in gestation, most fetal sterols were of maternal origin, but at approximately E13-14, in situ synthesis became increasingly important, and by birth, 55-60% of liver and lung sterols had been made by the fetus. In contrast, at E10-11, upon formation of the blood-brain barrier, the brain rapidly became the source of almost all of its own sterols (90% at birth). New, rapid, de novo sterol synthesis in brain was confirmed by the observation that concentrations of C24,25-unsaturated sterols were low in the brains of all very young fetuses but increased rapidly beginning at approximately E11-12. Reduced activity of sterol C24,25-reductase (Dhcr24) in brain, suggested by the abundance of C24,25-unsaturated compounds, seems to be the result of suppressed Dhcr24 expression. The early fetal brain also appears to conserve cholesterol by keeping cholesterol 24-hydroxylase expression low until approximately E18.  相似文献   

6.
7.
Two new species Mesothuria edwardensis sp.n. and Paradota marionensis sp.n., and four little-known species Cucumaria kerguelensis Théel, 1886, Cladodactyla crocea croceoides (Vaney, 1908), Psolidium incertum (Théel, 1886) and Synallactes challengeri (Théel, 1886) of holothurians are described from Marion and Prince Edward Islands.  相似文献   

8.
Holothurians (Holothurioidea, Echinodermata) are known to contain triterpene glycosides, which show antifungal activity. Nevertheless, fungi can be isolated from all organs of holothurians. During 1995-1996, mycelial fungi from several Far-Eastern holothurians--Apostichopus japonicus, Eupentacta fraudatrix, Cucumaria japonica--were collected from the Sea of Japan near the coast of Primorye (Russia) and studied. Twenty-seven species of marine fungi, mostly facultative ones belonging to the mitosporic fungi, were isolated from the holothurians and identified. Fungi isolated from the holothurian surface were more diverse and abundant than those from internal organs and coelomic fluids. Of the holothurians studied, Cucumaria japonica was poorest in abundance and diversity of fungi. The fungi Cladosporium brevicompactum and C. sphaerospermum were common in the holothurian coelom. Because of their high proteolytic activity, these fungi may be pathogenic to holothurians. The detritovorus holothurian A. japonicus was shown to modify the fungal assemblages within the marine bottom sediments.  相似文献   

9.
Ruan B  Lai PS  Yeh CW  Wilson WK  Pang J  Xu R  Matsuda SP  Schroepfer GJ 《Steroids》2002,67(13-14):1109-1119
Yeast produce traces of aberrant sterols by minor alternative pathways, which can become significant when normal metabolism is blocked by inhibitors or mutations. We studied sterols generated in the absence of the delta(8)-delta(7) isomerase (Erg2p) or delta(5) desaturase (Erg3p) by incubating three mutant strains of Saccharomyces cerevisiae with 5 alpha-cholest-8-en-3beta-ol, 8-dehydrocholesterol (delta(5,8) sterol), or isodehydrocholesterol (delta(6,8) sterol), together with the corresponding 3 alpha-3H isotopomer. Nine different incubations gave altogether 16 sterol metabolites, including seven delta(22E) sterols formed by action of the yeast C-22 desaturase (Erg5p). These products were separated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) and identified by gas chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and radio-Ag(+)-HPLC. When delta(8)-delta(7) isomerization was blocked, exogenous delta(8) sterol underwent desaturation to delta(5,8), delta(6,8), and delta(8,14) sterols. Formation of delta(5,8) sterol was strongly favored over delta(6,8) sterol, but both pathways are essentially dormant under normal conditions of sterol synthesis. The delta(5,8) sterol was metabolically almost inert except for delta(22) desaturation, whereas the delta(6,8) sterol was readily converted to delta(5,7), delta(5,7,9(11)), and delta(7,9(11)) sterols. The combined results indicate aberrant metabolic pathways similar to those in mammalian systems. However, delta(5,7) sterol undergoes only slight isomerization or desaturation in yeast, an observation that accounts for the lower levels of delta(5,8) and delta(5,7,9(11)) sterols in wild-type yeast compared to Smith-Lemli-Opitz individuals.  相似文献   

10.
A survey of lipid composition was made for 15 cnidarians from Okinawa, Japan. Eleven zooxanthellate scleractinian corals, an azooxanthellate scleractinian coral Tubastrea sp., a soft coral Lobophytum crassum, a hydroid coral Millepora murrayi and a sea anemone Boloceroides sp. were examined to elucidate the total lipid content, fatty acid composition for each lipid class and sterol composition. All specimens contained monoalkyldiacylglycerol which migrated between the triacylglycerols and esters on thin layer chromatography (TLC). Analysis by high performance thin layer chromatography (HPTLC) and Gas chromatography-mass spectrometry (GC-MS) revealed that these cnidarians were rich in wax ester and triacylglycerol, and that palmitic acid (16:0) was the most abundant fatty acid component of these lipid classes, followed by stearic (18:0) and oleic (18:1, n-9) acid in order of concentration. Of 11 sterols separated, four sterols were identified. It is suggested that sterol composition may be more useful for the biochemical classification of these cnidarians than fatty acid composition.  相似文献   

11.
A new sterol has been isolated from the skin of rats treated with triparanol. Its chromatographic behavior on silicic acid-Celite columns and in gas-liquid chromatographic systems indicated it to be a 4-methyl-Delta(8,24)-cholestadien-3beta-ol. The specific rotation, the delayed color reaction with Liebermann-Burchard reagent, and the nuclear magnetic resonance (NMR) data support the Delta(8(9))-unsaturation. Previous workers have shown that triparanol treatment results in an accumulation of Delta(24)-unsaturated sterols in animal tissues. Consonant with this observation, the infrared, NMR, and mass spectrometric data confirm the presence of a C-24(25) unsaturated side chain in this sterol.  相似文献   

12.
Cholest-8(14)-enol is the major radioactive component of the 4-di-demethyl sterol fraction biosynthesized from 4,4-dimethyl[2-(3)H(2)]cholest-8(14)-enol by rat liver microsomal fractions, and therefore the first steps in the biosynthesis of cholesterol from the latter compound probably involve removal of the 4-methyl groups. 4,4-Dimethylcholesta-8,14-dienol therefore is not an intermediate in this process, although its presence in the incubation medium at a concentration of 0.146mm almost completely inhibits the demethylation of 4,4-dimethyl[2-(3)H(2)]cholest-8(14)-enol. Nor is cholesta-8,14-dienol an intermediate in the conversion of cholest-8(14)-enol into cholest-7-enol and cholesterol. With 4,4-dimethyl[2-(3)H(2)]cholesta-8,14-dienol as the cholesterol precursor, 4,4-dimethylcholest-8(9)-enol becomes heavily labelled and there is very little radioactivity associated with cholesta-8,14-dienol.In this case, the most heavily labelled 4-di-demethyl sterols are cholest-7-enol and cholesterol with the former predominating. There is little or no radio-activity associated with cholest-8(14)-enol. A similar labelling pattern amongst the 4-di-demethyl sterols was observed with dihydro[(14)C]lanosterol as the precursor. The first step therefore in the synthesis of cholesterol from the 4,4-dimethyl[2-(3)H(2)]dienol is reduction of the Delta(14(15)) bond and not removal of the 4alpha-methyl group. Depending on the nature of the precursor, addition of the soluble fraction of the cell to the microsomal fraction resulted in a two- to four-fold stimulation of 4-di-demethyl sterol biosynthesis from the 4,4-dimethyl sterols studied. Under these conditions, 4,4-dimethylcholesta-8,14-dienol is the most efficient precursor of cholesterol and cholest-7-enol, and dihydrolanosterol is better than 4,4-dimethylcholest-8(14)-enol.  相似文献   

13.
The esterified and unesterified sterol fractions of bee-gathered mixed pollens were examined, and total sterol composition was determined. Two new sterols of pollens, 14α-methyl-9β,19-cyclo-5α-cholest-24-en-3β-ol (24-dehydropollinastanol) and 14α-methyl-5α-ergost-24(28)-en-3β-ol (24-methylenepollinastanol) were isolated and identified. Both sterols were found primarily in the esterified sterol fraction, and 24-methylenepollinastanol accounted for 43% of the sterols of this fraction. 24-Dehydropollinastanol and four other sterols which also contain a 9β,19-cyclopropane ring were found only in the esterified sterol fraction. 24-Methylenecholesterol was the major sterol of the unesterified sterol fraction.  相似文献   

14.
The peculiarities of the interaction between cell membrane lipids and triterpene glycosides from holothurians Apostichopus japonicus S. and Cucumaria japonica (holotoxin A1 and cucumarioside A2-2, respectively) were studied in comparison with plant saponins from Quillaja saponaria, known as hemolytic, adjuvant, and structure-forming components of immunostimulating complexes. Similar to Quillaja saponins, the sea glycosides, holotoxin A1 and cucumarioside A2-2 were shown to possess a high hemolytic activity (2.6 and 3 microg/ml, respectively) and sterol-depending membranotropic effect mediated by the formation of nonbilayer sterol-lipid-glycoside complexes. At the same time, cucumarioside A2-2 bound exogenic cholesterol only in the presence of membrane lipids, such as phosphatidylcholine or monogalactosyldiacylglycerol, in contrast to Quillaja saponins and holotoxin A1, which bound cholesterol in the molar ratios 1:2 and 1:8, respectively. Moreover, in all cases, tree-component complexes containing cholesterol, lipid, and glycoside exhibited a lower hemolytic activity compared with two-component sterol-glycoside complexes. It was concluded that the hydrophobic medium of cell membranes performs a potentiative role in the effective interaction between triterpene glycosides and "sterol receptors". A method for decreasing the toxicity of membranotropic holothurian glycosides possessing the immunomodulating properties was suggested.  相似文献   

15.
Expression of the Arabidopsis sterol methyltransferase2 (SMT2) cDNA in Escherichia coli yields a native protein, when purified to homogeneity, has the predicted molecular mass ca. 40 kDa on SDS-PAGE and recognizes native sterols synthesized by Arabidopsis with a Delta(24(25))-bond (cycloartenol; K(m) 35 microM and k(cat) 0.001s(-1)) and Delta(24(28))-bond (24(28)-methylenelophenol; K(m) 28 microM and k(cat) 0.01 s(-1)). Cycloartenol was converted to a single olefinic product-24(28)-methylenecycloartanol whereas 24(28)-methylenelophenol was converted to a mixture of three stereochemically related products with the Delta(24(28))Z-ethylidene, Delta(24(28))E-ethylidene, and Delta(25(27))-24 beta-ethyl side chains. Structural determinants essential to activity were the nucleophilic features at C-3 and C-24. The double bond position in the sterol substrate influenced catalytic efficiency according to the order: side chain, Delta(24(24))相似文献   

16.
Diethylstilbestrol (DES) was injected in doses ranging from 600 micro g to 0.4 micrograms/kg body weight into mature male rats over a 3 wk period. Profound effects on skin morphology and on sterol content of skin were noted. The sebaceous glands atrophied and the epidermis lost granularity. The concentrations of all skin sterols, with the exception of cholesterol, were reduced. At a dose level of DES of 4 micrograms/kg there was still a perceptible reduction in the concentration of Delta(7)-cholestenol. Incubation of skin fragments with acetate-2-(14)C for 2 hr demonstrated a reduced uptake of (14)C into the nonsaponifiable fraction of skin lipids at all dose levels studied. Preliminary thin-layer chromatography of the nonsaponifiable fraction revealed that the uptake of (14)C into cholesterol was only slightly decreased; uptake into cholesterol precursors was decreased somewhat more. The epidermis and dermis were separated by incubation of skin with elastase and hyaluronidase. The epidermis contained at least three times as much sterol per mg dry weight as did the dermis. Unesterified cholesterol was the major sterol present in both layers; the other sterols were present mainly as esters. DES injection resulted in no change in the free sterol content but markedly reduced the ester content of the epidermis and dermis.  相似文献   

17.
The fatty acid and sterol compositions of five species of marine dinoflagellates (Scrippsiella sp. Symbiodinium microadriaticum Freud, Gymnodinium sp., Gymnodinium sanguineum Hirasaki, and Fragilidium sp.) are reported. All contained the major fatty acids that are considered common in dinoflagellates, but the proportions were quite variable, and some species contained low contents of some polyunsaturated fatty acids. Concentration ranges for the major fatty acids were: 16:0 (9.0%–24.8%), 18:4(n-3) (2.5%–11.5%), 18:5(n-3) (7.0%–43.1%), 20:5(n-3) (EPA) (1.8%–20.9%), and 22:6(n-3) (DHA) (9.9%– 26.3%). Small amounts of novel very-long-chain highly unsaturated C28 fatty acids occurred in all species. Each dinoflagellate contained a complex mixture of 4-methyl sterols and 4-desmethyl sterols. Four species contained cholesterol, although the amounts were highly variable (from 0.2% of total sterols in Scrippsiella sp. to 45.6% in Fragilidium sp.). All but G. sanguineum contained the 4-methyl sterol dinosterol, and all species contained sterols lacking a double bond in the ring system (i.e. stanols); in Scrippsiella sp. cholestanol composed 24.3% of the total sterols. Other common features of the 4-methylsterol profiles were the presence of 23,24-dimethyl alkylation and unsaturation at Δ22 in the side chain. In Scrippsiella sp., four steroidal ketones were identified: cholestanone, dinosterone, 4α,23,24-trimethyl-5α-cholest-8(14)-en-3-one, and dinostanone. The structures of these corresponded to the major sterols in this species, suggesting that the sterols and steroidal ketones are biosynthetically linked. Steroidal ketones were not detected in the other species. Although fatty acid profiles can be used to distinguish among algal classes, they were not useful for differentiating among dinoflagellate species. In contrast, whereas some taxonomic groupings of dinoflagellates display similar sterol patterns, others, such as the gymnodinoids studied here, clearly do not. The combination of fatty acid, sterol, and steroidal ketone profiles may be useful complementary chemotaxonomic tools for distinguishing morphologically similar species. The identification of steroidal ketones supports earlier suggestions that certain dinoflagellates might be a significant source of such components in marine environments.  相似文献   

18.
3Beta-hydroxysterol Delta(14)-reductase operates during the conversion of lanosterol to cholesterol in mammalian cells. Besides the endoplasmic reticulum 3beta-hydroxysterol Delta(14)-reductase (C14SR) encoded by TM7SF2 gene, the lamin B receptor (LBR) of the inner nuclear membrane possesses 3beta-hydroxysterol Delta(14)-reductase activity, based on its ability to complement C14SR-defective yeast strains. LBR was indicated as the primary 3beta-hydroxysterol Delta(14)-reductase in human cholesterol biosynthesis, since mutations in LBR gene were found in Greenberg skeletal dysplasia, characterized by accumulation of Delta(14)-unsaturated sterols. This study addresses the issue of C14SR and LBR role in cholesterol biosynthesis. Both human C14SR and LBR expressed in COS-1 cells exhibit 3beta-hydroxysterol Delta(14)-reductase activity in vitro. TM7SF2 mRNA and C14SR protein expression in HepG2 cells grown in delipidated serum (LPDS) plus lovastatin (sterol starvation) were 4- and 8-fold higher, respectively, than in LPDS plus 25-hydroxycholesterol (sterol feeding), resulting in 4-fold higher 3beta-hydroxysterol Delta(14)-reductase activity. No variations in LBR mRNA and protein levels were detected in the same conditions. The induction of TM7SF2 gene expression is turned-on by promoter activation in response to low cell sterol levels and is mediated by SREBP-2. The results suggest a primary role of C14SR in human cholesterol biosynthesis, whereas LBR role in the pathway remains unclear.  相似文献   

19.
Pneumocystis carinii is an unusual fungus that can cause pneumonitis in immunosuppressed laboratory rats. Reactions in sterol biosynthesis are attractive targets for development of antimycotic drugs. A key enzyme in sterol biosynthesis is sterol 14α-demethylase (14DM), which is coded by the erg11 gene. Here we describe detailed sterol analysis of wild-type Saccharomyces cerevisiae and in an erg11 knockout mutant expressing either P. carinii or S. cerevisiae 14DM from a plasmid-borne cDNA. Sterols of the three strains were qualitatively and quantitatively analyzed using thin-layer chromatography, high-performance liquid chromatography, and gas-liquid chromatography and mass spectrometry and nuclear magnetic resonance spectroscopy. Biochemical evidence for functional complementation was provided by detecting the same major sterols in all three strains with ergosterol being by far the most abundant. A total of 25 sterols was identified, 16 of which were identified in all three strains. The ratios of lanosterol:14-desmethyllanosterol in the three strains indicate that the mutant transformed with erg11 showed more 14DM activity than wild-type yeast. The sterol analyses also indicated that the P. carinii 14DM can utilize the sterol substrates used by the S. cerevisiae 14DM and suggested that the yeast 14DM in the yeast cell utilizes 4α-methyl sterols better than the P. carinii enzyme.  相似文献   

20.
In the current decade, holothurians are becoming more popular among researchers due to the recently obtained data about the chemical structures and physiological activities of bioactive ingredients that are extracted from these marine invertebrates. In Southeast Asia, Japan, Korea, and China, the use of these animals as a valuable food product and an object of traditional folk medicine has had a long history. At the same time, in western countries, as well as in Russia, products from sea cucumbers are little known and are often considered as an exotic oriental cuisine. This paper provides an analytical review of the literature that is dedicated to the nutritional value of holothurians as a potential source of components for functional food and nutraceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号