首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flounder muscle (Pseudopleuronectes americanus) glyceraldehyde-3-phosphate dehydrogenase was characterized as to its stability towards various inactivating treatments in the presence and absence of the enzyme cofactor, NAD. Incubation of a partially purified enzyme preparation at urea concentrations greater than 2 M produced a very rapid inactivation. NAD greatly reduced the rate of inactivation at all the urea concentrations tested. Incubation of each of the three major muscle enzyme forms in 0.1 percent trypsin or chymotrypsin for forty-five minutes decreased the activity of each form by 65 percent and 55 percent, respectively. NAD (5mM) afforded complete protection to each enzyme form from proteolytic digestion by these two enzymes. Exposure of each form to 50 degrees or 20 mM ATP also led to gross inactivation which could be greatly reduced if the respective incubations were performed in the presence of 5mM NAD. NAD was also found to be required for the renaturation of the unfolded urea-denatured subunits to form the active tetramer.  相似文献   

2.
The purified preparations of glyceraldehyde-3-phosphate dehydrogenase isolated from frog and pike skeletal muscles were found homogenous under polyacrylamide gel electrophoresis. Their amino acid composition is similar to that of glyceraldehyde-3-phosphate dehydrogenase from other animal species. The interaction kinetics for frog and pike glyceraldehyde-3-phosphate dehydrogenase SH-groups with 5,5'-dithio-bis-(2-nitrobenzoate) (DTNB) were studied. A negative correlation between the thermal stability of the enzyme preparations from pig, pike, lamprey and frog muscles and the reactivity of their SH-groups with respect to DTNB was observed. NAD at saturating concentrations was found to protect the enzyme from lower vertebrates muscles against thermal inactivation in a lesser degree than does the pig muscle enzyme. The weaker protective effect of NAD was observed for lamprey and frog enzyme preparations, which are characterized by a low SH-group reaction ability. Frog and pike apoenzymes are considerably more resistant to trypsin proteolysis than the pig apoenzyme.  相似文献   

3.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is inactivated by trypsin, chymotrypsin, pronase E, thermolysin, 4.0 M urea, and by heating to 49 degrees C. It is protected, to varying degrees, against all these forms of inactivation by glucose 6-phosphate, NAD+, and NADP+. When these ligands are present at 10 times their respective KD concentrations, protection by NAD+ or glucose 6-phosphate is substantially greater than protection by NADP+. A detailed analysis was undertaken of the protective effects of these ligands, at varying concentrations, on proteolysis of glucose-6-phosphate dehydrogenase by thermolysin. This study confirmed the above conclusion and permitted calculation of KD values for NAD+, NADP+, and glucose 6-phosphate that agree with such values determined by independent means. For NADP+, two KD values, 6.1 microM and 8.0 mM, can be derived, associated with protection against thermolysin by low and high NADP+ concentrations, respectively. The former value is in agreement with other determinations of KD and the latter value appears to represent binding of NADP+ to a second site which causes inhibition of catalysis. A Ki value of 10.5 mM for NADP+ was derived from inhibition studies. The principal conclusion from these studies is that NAD+ binding to L. mesenteroides glucose-6-phosphate dehydrogenase results in a larger global conformational change of the enzyme than does NADP+ binding. Presumably, a substantially larger proportion of the free energy of binding of NAD+, compared to NADP+, is used to alter the enzyme's conformation, as reflected in a much higher KD value. This may play an important role in enabling this dual nucleotide-specific dehydrogenase to accommodate either NAD+ or NADP+ at the same binding site.  相似文献   

4.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

5.
Abstract— Cat sciatic nerves were exposed to iodoacetate for a period of 5–10 min and after washing out the iodoacetate, the enzymes, glyceraldehyde-3-phosphate dehydrogenase ( d -glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating); EC 1.2.1.12) and lactate dehydrogenase ( l -lactate: NAD oxidoreductase; EC 1.1.1.27) were extracted from the high-speed supernatant fraction of nerve homogenates. Concentrations of iodoacetate as low as 2.5 m m could completely block activity of glyceraldehyde-3-phosphate dehydrogenase but had no effect on lactate dehydrogenase. These findings are in accord with the classical concept shown earlier for muscle that iodoacetate blocks glycolysis by its action on glyceraldehyde-3-phosphate dehydrogenase. A complete block of activity of the enzyme was found after treatment with 2 to 5 m m -iodoacetate for a period of 10 min and such blocks were irreversible for at least 3 h. Glyceraldehyde-3-phosphate dehydrogenase activity was NAD specific, with NADP unable to substitute for NAD. The results are discussed in relation to the effect of iodoacetate in blocking glycolysis and in turn the fast axoplasmic transport of materials in mammalian nerve.  相似文献   

6.
Yeast glyceraldehyde-3-phosphate dehydrogenase (glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) immobilized on CNBr-activated Sepharose 4-B has been subjected to dissociation to obtain matrix-bound dimeric species of the enzyme. Hybridization was then performed using soluble glyceraldehyde-3-phosphate dehydrogenase isolated from rat skeletal muscle. Immobilized hybrid tetramers thus obtained were demonstrated to exhibit two distinct pH-optima of activity characteristic of the yeast and muscle enzymes, respectively. The results indicate that under appropriate conditions the activity of each of the dimers composing the immobilized hybrid tetramer can be studied separately.  相似文献   

7.
The effect of borate on glyceraldehyde-3-phosphate dehydrogenase from human, pig and rabbit muscle was studied. At lower concentration of borate only the dehydrogenase activity is inhibited, reversibly and competitively against NAD. At concentration of borate above 6 mM the plots of 1/v versus borate concentration become nonlinear and the inhibition is extended to the esterase and acetylphosphatase activities. In certain conditions a time-dependent inactivation and reactivation was observed. The direct interaction between borate (if present at concentration of at least 6 mM) and glyceraldehyde-3-phosphate dehydrogenase is postulated, the possible site of the reaction being the histidine residue(s). The esterase activity of the human muscle enzyme and the effect of borate on it are different from the other mammalian enzymes.  相似文献   

8.
Summary An albino seedling of Zea mays L. was investigated for its potential for CO2-assimilation. In the mesophyll the number, dimensions and fine structure of chloroplasts are drastically reduced but to a lesser extent in the bundle sheath. Chlorophyll concentration is zero and carotenoid concentration almost zero. Albinism also exerts a strong influence on the stroma of bundle sheath chloroplasts; ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) activity and glyceraldehyde-3-phosphate dehydrogenase (NADP) (EC 1.2.1.13) activity is not detectable. The C4-enzymes phosphoenolpyruvate carboxylase (EC 4.1.1.31) and malate dehydrogenase (decarboxylating) (EC 1.1.1.40) and the non-photosynthetic linked enzymes malate dehydrogenase (NAD) (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1.) and glyceraldehyde-3-phosphate dehydrogenase (NAD) (EC 1.2.1.1.) are present in the albino seedling with activities comparable to those in etiolated maize seedlings. The potential for CO2 fixation of the albino seedlings exceeds that of comparable dark seedlings considerably. The results are discussed with regard to enzyme localization of the C4 pathway of photosynthesis.Abbreviations Aspartate aminotransferase L-aspartate-2-oxoglutarate aminotransferase-EC 2.6.1.1. - GAPDH (NAD) glyceraldehyde-3-phosphate dehydrogenase (NAD dep.)-EC 1.2.1.12 - GAPDH (NADP) glyceraldehyde-3-phosphate dehydrogenase (NADP dep.)-EC 1.2.1.13 - malic enzyme malate dehydrogenase (NADP dep., decarboxylating)-EC 1.1.1.40 - MDH malate dehydrogenase (NAD dep.)-1.1.1.37 - PEP carboxylase phosphoenolpyruvate carboxylase-EC 4.1.1.31 - RuDP carboxylase ribulose-1.5-biphosphate carboxylase-EC 4.1.1.39  相似文献   

9.
Incubation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with the antibiotic pentalenolactone (1) resulted in time-dependent, irreversible inhibition of GAPDH. The kinetics of inactivation were biphasic, exhibiting an initial rapid phase and a slower second phase. Pentalenolactone methyl ester (2) also irreversibly inactivated GADPH, albeit at a slower rate and with a higher KI. The substrate glyceraldehyde-3-phosphate (G-3-P) afforded protection against inactivation by 1, whereas the presence of NAD+ in the incubation mixture stimulated the inactivation by increasing the apparent affinity of the enzyme for the inhibitor. In steady-state kinetic experiments, 1 acted as a competitive inhibitor of GAPDH with respect to G-3-P but exhibited uncompetitive inhibition with respect to NAD+. Inactivation of NAD+-free apo-GAPDH by 1 showed simple pseudo-first-order kinetics. By titrating the free thiol residues of partially inactivated GAPDH, it was found that both pentalenolactone and pentalenolactone methyl ester react with all four Cys-SH residues of the tetrameric GAPDH.  相似文献   

10.
Initial-rate studies were made of the oxidation of L-glutamate by NAD+ and NADP+ catalysed by highly purified preparations of dogfish liver glutamate dehydrogenase. With NAD+ as coenzyme the kinetics show the same features of coenzyme activation as seen with the bovine liver enzyme [Engel & Dalziel (1969) Biochem. J. 115, 621--631]. With NADP+ as coenzyme, initial rates are much slower than with NAD+, and Lineweaver--Burk plots are linear over extended ranges of substrate and coenzyme concentration. Stopped-flow studies with NADP+ as coenzyme give no evidence for the accumulation of significant concentrations of NADPH-containing complexes with the enzyme in the steady state. Protection studies against inactivation by pyridoxal 5'-phosphate indicate that NAD+ and NADP+ give the same degree of protection in the presence of sodium glutarate. The results are used to deduce information about the mechanism of glutamate oxidation by the enzyme. Initial-rate studies of the reductive amination of 2-oxoglutarate by NADH and NADPH catalysed by dogfish liver glutamate dehydrogenase showed that the kinetic features of the reaction are very similar with both coenzymes, but reactions with NADH are much faster. The data show that a number of possible mechanisms for the reaction may be discarded, including the compulsory mechanism (previously proposed for the enzyme) in which the sequence of binding is NAD(P)H, NH4+ and 2-oxoglutarate. The kinetic data suggest either a rapid-equilibrium random mechanism or the compulsory mechanism with the binding sequence NH4+, NAD(P)H, 2-oxoglutarate. However, binding studies and protection studies indicate that coenzyme and 2-oxoglutarate do bind to the free enzyme.  相似文献   

11.
Rat liver enzymes were used to study the relationship between their in vivo half-lives and their apparent hydrophobicity or their resistance to inactivation by mechanical shaking. The apparent hydrophobicity of these enzymes, measured as the percent of the protein recovered from an octyl-Sepharose column, is correlated with their known half-lives (r = 0.75, P less than 0.01). The presence of specific ligands which are known to increase compactness by impeding unfolding of proteins decreased the apparent hydrophobicity of fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase. Resistance of enzymes to inactivation by mechanical shaking correlated well with their in vivo half-lives (r = 0.90, P less than 0.01). When the shaking experiments were done in the presence of substrates, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase were protected from inactivation.  相似文献   

12.
The NADP analog and NAD diphosphate were tested for the coenzyme or inhibiting activity toward various dehydrogenases. These NAD derivatives showed little or no activity of as coenzymes for most of dehydrogenases tested. Only glyceraldehyde 3-phosphate dehydrogenase reduced the NADP analog under the high concentration of enzyme system. These NAD derivatives showed no inhibiting effect toward the reduction or oxidation of pyridine coenzymes.  相似文献   

13.
Cathepsins M and B from rabbit liver lysosomes were separated by chromatography on Ultrogel AcA34 at low ionic strength and purified to homogeneity, and their catalytic and molecular properties were compared. Cathepsin M was relatively inactive with synthetic peptide substrates. Thus, it hydrolyzed benzoyl arginine naphthylamide at only one-fifth the rate observed with cathepsin B, and no activity was detected with Gly-Phe naphthylamide which is a relatively good substrate for cathepsin B. On the other hand, cathepsin M exhibited a preference for protein substrates. It was more active than cathepsin B in catalyzing the inactivation of the following enzymes: rabbit muscle or liver fructose-1,6-bisphosphate aldolases, rabbit liver fructose-1,6-bisphosphatase and pyruvate kinase, yeast glucose-6-phosphate dehydrogenase, and rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. With glucagon as substrate, both enzymes showed similar peptidyl dipeptidase activities with some minor differences in peptide bond specificity. Cathepsins M and B are similar in size, with apparent molecular weights of 30,200 for cathepsin M and 28,800 for cathepsin B, and in amino acid composition and carbohydrate content. Each contains approximately 2-3 equivalents/mol glucosamine, 3 equivalents/mol mannose, and no fucose or galactosamine. They also show similar microheterogeneity in sodium dodecylsulfate-gel electrophoresis and isoelectric focusing; this microheterogeneity is probably related to differences in glycosylation. Extensive homology in primary structure for the two proteins was indicated by the similar patterns of peptides formed on digestion with trypsin.  相似文献   

14.
The stabilizing effect of the coenzyme (NAD) on the structure of glyceraldehyde-3-phosphate dehydrogenase from lamprey and porcine muscles with respect to proteolysis and heat denaturation was studied. The process of heat denaturation was followed by the changes in specific activity of the enzymes; that of proteolysis--by the changes in specific activity and circular dichroism. It was shown that in both cases NAD at saturating concentration exerts a far weaker stabilizing effect on the structure of glyceraldehyde-3-phosphate dehydrogenase from lamprey muscle than on that of the porcine muscle enzyme. The coensyme-dependent stabilization of lamprey muscle glyceraldehyde-3-phosphate dehydrogenase does not differ from that of mammalian muscle enzyme. Possible interrelationship between the phenomenon observed and the molecular mechanism of thermal adaptation in the cold-blooded animals is discussed.  相似文献   

15.
The concentrations of NAD and NADP have been determined in detergent extracts of washed rat liver microsomes. Precautions were taken during the preparation of the microsomes to remove nicotinamide nucleotides from their external surface both by hydrolysis by nucleotide pyrophosphatase (EC 3.6.1.9) and by washing them three times in 0.15 M-Tris/HCl, pH 8.0, to remove soluble proteins which bind these nucleotides. The mannose phosphatase was essentially completely latent, indicating that the microsomes were intact. Assuming these nucleotides are in the cisternae of the microsomes, the concentrations in the cisternae are 240 +/- 25 microM-NAD and 55 +/- 12 microM-NADP. These levels of nucleotides are compatible with both the glucose:NAD+ and the glucose 6-phosphate:NADP+ oxidoreductase activities of hexose phosphate dehydrogenase (EC 1.1.1.47). Since the organ and subcellular distributions of this dehydrogenase and glucose-6-phosphatase are similar, and Pi stimulates the glucose:NAD+ oxidoreductase activity, it is proposed that the combined action of these two enzymes leads to the reduction of both coenzymes in the lumen of the endoplasmic reticulum. A modification of the colorimetric method of Nisselbaum & Green [(1969) Anal. Biochem. 27, 212-217] for the determination of NADP+ is described. Colour formation is linear with the concentration of NADP+ and is sensitive to less than 0.3 nmol of NADP+.  相似文献   

16.
Bovine liver and mammary UDP-galactose-4-epimerases were investigated with respect to various inhibitors and inactivators. Uridine nucleotides and NADH are potent inhibitors with Ki values in the low micromolar range. The NAD+/NADH ratio may be an important physiological control mechanism for it affects markedly the activity of the enzyme with 50% inhibition occurring at a ratio of 20:1. In the presence of uridine nucleotides binding of NADH to the epimerases is enhanced. Consequently, the effect of changes in the NAD+/NADH ratio in vivo would not be immediately apparent as uridine nucleotides would slow down the displacement of NADH by NAD+. Neither uridine nor galactose 1-phosphate inhibits the purified enzymes as previously reported with the impure liver enzyme. Uridine nucleotides provide almost total protection against the apparent first order inactivation of the epimerases by trypsin and allow determination of dissociation constants. NAD+ partially protects against trypsin inactivation. Inactivation with various sulfhydryl reagents is complex and the results indicate that at least three sulfhydryl groups may be modified before total inactivation occurs. Partial inactivation occurs upon modification of the epimerases with 2-hydroxy-5-nitrogenzyl bromide. Some protection against this modification is provided by the combination of NAD+ and UDP.  相似文献   

17.
Treatment of a yeast suspension with ozone inactivates a number of cytosolic enzymes. Among 15 studied, the most drastic inactivation was found for glyceraldehyde-3-phosphate dehydrogenase and to lesser extents: NAD-glutamate dehydrogenase, pyruvate decarboxylase, phosphofructokinase-1 and NAD-alcohol dehydrogenase. Ozone treatment also effects the quantity of ATP and of other nucleoside triphosphates, reducing to about 50% of the initial value. The ATP missing in the cells appears in the medium. NAD and protein also accumulate in the medium suggesting that the yeast cells have been permeabilized. Permeabilization of the yeast cells by treatment with ozone preceeds the inactivation of glyceraldehyde-3-phosphate dehydrogenase and other cytosolic enzymes.Dedicated to Prof. Dr. B. Hess at the occasion of his 65th birthday  相似文献   

18.
The NH2-terminal amino acid sequence of rat skeletal muscle glyceraldehydephosphate dehydrogenase (D-glyceraldehyde-3-phosphate : NAD+ oxidoreductase(physphorylating), EC 1.2.1.12) was determined to be Val-Lys-Val-Gly-Val-Asn-Gly-Phe-Gly-Arg-Ile-Gly-Arg-Leu-Val-Thr-Arg-Ala-Ala-Phe-Ser-Ser-(-)-(-)--Val-Asx-Ile-Val-Ala-Ile. The presence of Asn instead of Asp in position 6 differentiates this enzyme from other glyceraldehyde-3-phosphate dehydrogenases so far sequenced with the exception of the enzymes isolated from liver. The location of Asn in position 6 has been considered as a specific property of liver glyceraldehyde-3-phosphate dehydrogenase (Kulbe, K.D., Jackson, K.W. and Tang, J. (1975) Biochem. Biophys. Res. Commun. 67, 35--42); this suggestion is not sustained by the results of the present investigation. The amino acid composition of the rat skeletal muscle dehydrogenase demonstrates the unusually low histidine content of this enzyme as compared to other mammalian muscle glyceraldehyde-phosphate dehydrogenases.  相似文献   

19.
NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase.  相似文献   

20.
Rat liver microsomal fraction generates 14CO2 from [1(-14)C]glucose 6-phosphate in the presence of NADP+ and a detergent. The activity is mediated through an enzyme system consisting of hexose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase inherent to the microsomes, with the latter enzyme reaction being a rate-determining step. Both enzymes of the system in microsomes are extremely resistant to trypsin digestion, thereby distinguishing them from the corresponding cytosol enzymes. A stoichiometric relationship was obtained between the generations of NADPH and 14CO2 (2: 1 on a molar basis), indicating that the observed generation of NADPH in microsomes could entirely be accounted for by the action of the enzyme system. A method was devised to measure NADP(H) inside or outside the microsomal vesicles, and it was found that a considerable amount of the cofactor was present within the vesicles. Subfractionation of various intracellular fractions on sucrose density gradients confirmed the close association of NADP(H) with liver microsomes. It is suggested that both enzymes of the system function to generate the reduced form of NADP+ in the luminal space of the endoplasmic reticulum, where NADP(H) and glucose 6-phosphate are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号