首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long‐term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations.  相似文献   

2.
Implanted defibrillators have become mainstream therapy for the prevention of sudden cardiac death from ventricular tachyarrhythmias. A decade of studies has confirmed the superiority of ICDs over antiarrhythmic drug therapy in prolonging the life of patients with a prior history of sustained VT or VF. More recent studies have compared ICD therapy to drugs or no antiarrhythmic therapy as 'primary prophylaxis' in patients considered at high risk for sudden death or with prior MIs. In selected patients, ICDs lead to important relative and absolute reductions in mortality in patients with no prior history of sustained VT or VF. Clinicians need to carefully consider these studies in their management of patients with CAD and severe LV dysfunction.  相似文献   

3.
Numerous epidemiological studies have investigated potential associations between allergy history and cancer risk with strong inverse associations reported in studies of pancreatic cancer, glioma, and childhood leukemia. Recently, there has been a rapid expansion of the epidemiological literature both of studies evaluating self-reported allergy history in relation to cancer risk and of studies evaluating biological indicators of allergy history and immune function including levels of immunoglobulin (Ig) E. However, there are several potential methodological limitations associated with prior studies, and further research is required to clarify associations observed. This paper summarizes the recent epidemiological literature examining associations between allergy history and cancer risk. From 2008, a total of 55 epidemiological studies were identified that examined some aspect of the association between allergy and cancer. Although the majority of studies examined self-reported allergy history in relation to cancer risk, there were also studies examining allergy diagnoses or discharges as captured in existing administrative databases, levels of IgE, polymorphisms of allergy, inflammatory- or allergy-related cytokine genes, and concentrations of immune regulatory proteins. The most frequently studied cancer sites included brain and lymphatic and hematopoietic cancers. Potential methodological sources of bias are discussed as well as recommendations for future work.  相似文献   

4.
Pairing two animals in parabiosis to test for systemic or circulatory factors from one animal affecting the other animal has been used in scientific studies for at least 150 years. These studies have led to advances in fields as diverse as endocrinology, immunology, and oncology. A variation on the technique, heterochronic parabiosis, whereby two animals of different ages are joined to test for systemic regulators of aspects of aging or age‐related diseases also has almost a century‐long scientific history. In this review, we focus on the history of heterochronic parabiosis, methodological considerations and caveats, and the major advances that have emerged from those studies, including recent advances in our understanding of stem cell aging.  相似文献   

5.
Remote oceanic islands have long been recognized as natural models for the study of evolutionary processes involved in diversification. Their remoteness provides opportunities for isolation and divergence of populations, which make islands remarkable settings for the study of diversification. Groups of islands may share a relatively similar geological history and comparable climate, but their inhabitants experience subtly different environments and have distinct evolutionary histories, offering the potential for comparative studies. A range of organisms have colonized the Galápagos Islands, and various lineages have radiated throughout the archipelago to form unique assemblages. This review pays particular attention to molecular phylogenetic studies of Galápagos terrestrial fauna. We find that most of the Galápagos terrestrial fauna have diversified in parallel to the geological formation of the islands. Lineages have occasionally diversified within islands, and the clearest cases occur in taxa with very low vagility and on large islands with diverse habitats. Ecology and habitat specialization appear to be critical in speciation both within and between islands. Although the number of phylogenetic studies is continuously increasing, studies of natural history, ecology, evolution and behaviour are essential to completely reveal how diversification proceeded on these islands.  相似文献   

6.
Investigators of animal behavior since the eighteenth century have sought to make their work integral to the enterprises of natural history and/or the life sciences. In their efforts to do so, they have frequently based their claims of authority on the advantages offered by the special places where they have conducted their research. The zoo, the laboratory, and the field have been major settings for animal behavior studies. The issue of the relative advantages of these different sites has been a persistent one in the history of animal behavior studies up to and including the work of the ethologists of the twentieth century. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The ecological constraints hypothesis is widely accepted as an explanation for the evolution of delayed dispersal in cooperatively breeding birds. Intraspecific studies offer the strongest support. Observational studies have demonstrated a positive association between the severity of ecological constraints and the prevalence of cooperation, and experimental studies in which constraints on independent breeding were relaxed resulted in helpers moving to adopt the vacant breeding opportunities. However, this hypothesis has proved less successful in explaining why cooperative breeding has evolved in some species or lineages but not in others. Comparative studies have failed to identify ecological factors that differ consistently between cooperative and noncooperative species. The life history hypothesis, which emphasizes the role of life history traits in the evolution of cooperative breeding, offers a solution to this difficulty. A recent analysis showed that low adult mortality and low dispersal predisposed certain lineages to show cooperative behaviour, given the right ecological conditions. This represents an important advance, not least by offering an explanation for the patchy phylogenetic distribution of cooperative breeding. We discuss the complementary nature of these two hypotheses and suggest that rather than regarding life history traits as predisposing and ecological factors as facilitating cooperation, they are more likely to act in concert. While acknowledging that different cooperative systems may be a consequence of different selective pressures, we suggest that to identify the key differences between cooperative and noncooperative species, a broad constraints hypothesis that incorporates ecological and life history traits in a single measure of 'turnover of breeding opportunities' may provide the most promising avenue for future comparative studies. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

8.
Cave animals have historically attracted the attention of evolutionary biologists because of their bizarre ‘regressive’ characters and convergent evolution. However, understanding of their biogeographic and evolutionary history, including mechanisms of speciation, has remained elusive. In the last decade, molecular data have been obtained for subterranean taxa and their surface relatives, which have allowed some of the classical debates on the evolution of cave fauna to be revisited. Here, we review some of the major studies, focusing on the contribution of phylogeography in the following areas: biogeographic history and the relative roles of dispersal and vicariance, colonization history, cryptic species diversity and modes of speciation of cave animals. We further consider the limitations of current research and prospects for the future. Phylogeographic studies have confirmed that cave species are often cryptic, with highly restricted distributions, but have also shown that their divergence and potential speciation may occur despite the presence of gene flow from surface populations. Significantly, phylogeographic studies have provided evidence for speciation and adaptive evolution within the confines of cave environments, questioning the assumption that cave species evolved directly from surface ancestors. Recent technical developments involving ‘next generation’ DNA sequencing and theoretical developments in coalescent and population modelling are likely to revolutionize the field further, particularly in the study of speciation and the genetic basis of adaptation and convergent evolution within subterranean habitats. In summary, phylogeographic studies have provided an unprecedented insight into the evolution of these unique fauna, and the future of the field should be inspiring and data rich.  相似文献   

9.
A major goal of life history studies is to identify and explain features of the life history of individual species that follow broad rules across many groups of organisms, features that are characteristic of particular phylogenetic lineages, and features that are specific adaptations, to local ecological situations. In recent years we have developed a general theory of life history that interrelates many aspects of ontogeny and reproduction across a wide range of organisms. Contrasted to most other mammals, primates have long average adult lifespans and few babies per year for their adult body size. This new theory suggests that these aspects of life history follow directly from the fact that primates have slow individual growth rates. This slow growth rate is thus the basic phenomenon that needs explanation to understand primate slowness.  相似文献   

10.
Book Review     
《Journal of bryology》2013,35(3):261-263
Abstract

Most studies on population ecology of bryophytes have involved common species. However, some studies have compared life history strategies in rare and common species. We review the life history strategies (life expectancy, sexual and asexual reproduction, spore production, spore size and dispersal) for species that are rare in relation to pattern and persistency of suitable habitat patches. In particular, we discuss the dynamics on two levels, within and among localities, for different categories of rare species. We predict that most rare species will be found to have restricted dispersal capacities but higher than average life expectancies of local subpopulations. Natural rarity is distinguished from human-induced rarity and species rare for the latter reason are distinguished as 'threatened'.  相似文献   

11.
Spawning, copulation and inbreeding coefficients in marine invertebrates   总被引:3,自引:0,他引:3  
Patterns of population genetic variation have frequently been understood as consequences of life history covariates such as dispersal ability and breeding systems (e.g. selfing). For example, marine invertebrates show enormous variation in life history traits that are correlated with the extent of gene flow between populations and the magnitude of differentiation among populations at neutral genetic markers (FST). Here we document an unexpected correlation between marine invertebrate life histories and deviation from Hardy-Weinberg equilibrium (non-zero values of FIS, the inbreeding coefficient). FIS values were significantly higher in studies of species with free-spawned planktonic sperm than in studies of species that copulate or have some form of direct sperm transfer to females or benthic egg masses. This result was robust to several different analytical approaches. We note several mechanisms that might contribute to this pattern, and appeal for more studies and ideas that might help to explain our observations.  相似文献   

12.
Present knowledge of brain mechanisms is mainly based on anatomical and physiological studies. Such studies are however insufficient to understand the information processing of the brain. The present new focus on neural network studies is the most likely candidate to fill this gap. The present paper reviews some of the history and current status of neural network studies. It signals some of the essential problems for which answers have to be found before substantial progress in the field can be made.  相似文献   

13.
We estimate the body sizes of direct ancestors of extant carnivores, and examine selected aspects of life history as a function not only of species' current size, but also of recent changes in size. Carnivore species that have undergone marked recent evolutionary size change show life history characteristics typically associated with species closer to the ancestral body size. Thus, phyletic giants tend to mature earlier and have larger litters of smaller offspring at shorter intervals than do species of the same body size that are not phyletic giants. Phyletic dwarfs, by contrast, have slower life histories than nondwarf species of the same body size. We discuss two possible mechanisms for the legacy of recent size change: lag (in which life history variables cannot evolve as quickly as body size, leading to species having the 'wrong' life history for their body size) and body size optimization (in which life history and hence body size evolve in response to changes in energy availability); at present, we cannot distinguish between these alternatives. Our finding that recent body size changes help explain residual variation around life history allometries shows that a more dynamic view of character change enables comparative studies to make more precise predictions about species traits in the context of their evolutionary background.  相似文献   

14.
Life‐history theory concerns the trade‐offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life‐history trade‐offs, but the details remain obscure. As life‐history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life‐history trade‐offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life‐history information is available, cannot generally be performed without compromising the aims of the studies that generated the life‐history data. There is a need therefore for novel non‐invasive measurements of multi‐tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life‐history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life‐history trade‐offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life‐history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade‐offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other.  相似文献   

15.
Life‐history traits describe parameters associated with growth, size, survival, and reproduction. Life‐history variation is a hallmark of biological diversity, yet researchers commonly observe that one of the major axes of life‐history variation after controlling for body size involves trade‐offs among growth, reproduction, and longevity. This persistent pattern of covariation among these specific traits has engendered a search for shared mechanisms that could constrain or facilitate production of variation in life‐history strategies. Endocrine traits are one candidate mechanism that may underlie the integration of life history and other phenotypic traits. However, the vast majority of this research has been on the effects of steroid hormones such as glucocorticoids and androgens on life‐history trade‐offs. Here we propose an expansion of the focus on glucocorticoids and gonadal hormones and review the potential role of insulin‐like growth factor‐1 (IGF‐1) in shaping the adaptive integration of multiple life‐history traits. IGF‐1 is a polypeptide metabolic hormone largely produced by the liver. We summarize a vast array of research demonstrating that IGF‐1 levels are susceptible to environmental variation and that IGF‐1 can have potent stimulatory effects on somatic growth and reproduction but decrease lifespan. We review the few studies in natural populations that have measured plasma IGF‐1 concentrations and its associations with life‐history traits or other characteristics of the organism or its environment. We focus on two case studies that found support for the hypothesis that IGF‐1 mediates adaptive divergence in suites of life‐history traits in response to varying ecological conditions or artificial selection. We also examine what we view as potentially fruitful avenues of research on this topic, which until now has been rarely investigated by evolutionary ecologists. We discuss how IGF‐1 may facilitate adaptive plasticity in life‐history strategies in response to early environmental conditions and also how selection on loci controlling IGF‐1 signaling may mediate population divergence and eventual speciation. After consideration of the interactions among androgens, glucocorticoids, and IGF‐1 we suggest that IGF‐1 be considered a suitable candidate mechanism for mediating life‐history traits. Finally, we discuss what we can learn about IGF‐1 from studies in free‐ranging animals. The voluminous literature in laboratory and domesticated animals documenting relationships among IGF‐1, growth, reproduction, and lifespan demonstrates the potential for a number of new research questions to be asked in free‐ranging animals. Examining how IGF‐1 mediates life‐history traits in free‐ranging animals could lead to great insight into the mechanisms that influence life‐history variation.  相似文献   

16.
Captive and field studies both provide valuable and complementary information that lead to a better understanding of a species' behavioral ecology. Here, we review studies from wild, captive, and semi-free ranging populations of squirrel monkeys (Saimiri sp.), in order to (a) provide a more current (1985-2010) review of Saimiri behavioral ecology and (b) illustrate that integrating data collected in a variety of settings is an effective approach to addressing ecological questions in primates. Captive environments, such as zoological facilities and research colonies, can be advantageous to researchers by allowing longitudinal studies of behavior and reproduction, as well as providing opportunities for gathering data on life history, because physiological and life history data are known for individual animals. Studies of field populations can provide contextual information regarding the adaptive nature of behaviors that are studied in captivity. Squirrel monkeys are small, neotropical primates that have extensively been used in captive research. As the last in-depth review of Saimiri biology was published in 1985 [Rosenblum & Coe, The squirrel monkey. New York: Academic Press], we review studies since conducted on Saimiri ecology, life history, social behavior, reproduction, and conservation. Our review indicates that there is much variation in socioecology and life history traits between Saimiri species and, surprisingly, also between populations of the same species studied at different locales. In addition, much is known about squirrel monkey reproductive physiology, basic ecology, and vocal communication, but data are still lacking in the fields of life history and some adaptive components and social behavior. In particular, longitudinal studies in the field would be particularly relevant for a genus with a slow life history such as Saimiri. Finally, few data (captive or wild) are available on S. ustus and S. vanzolinii, though at least one of these species is threatened.  相似文献   

17.
Although freshwater fishes have a long history of human-induced introduction, recent globalization has accelerated worldwide introduction events even more, and those introduced fish species are now perceived to be a major threat to ecosystems. Over the last two decades, numerous studies have been published on introduced fish species; however, it has been challenging for researchers to understand the magnitude of the impact and the underlying mechanism of invasions. Recently, new perspectives in understanding invasive freshwater fish biology have been presented in a number of studies, which can be largely attributed to advances in analytical techniques and also to a growing need for proactive analysis in management strategies. The aim of this paper is to summarize new ecological perspectives, the need for research, and/or management implications with emphasis on technological advances in, for example, statistics, molecular analysis, modeling techniques, and landscape analysis addressed under the following five categories: introduction pathways, predicting spatial patterns, biotic homogenization, hybridization, and control and eradication. The conservation of native fish fauna and the management of introduced fish species will benefit from combining these new perspectives with fundamental studies such as those on life history and population biology.  相似文献   

18.
Extrapair paternity is a crucial parameter for evolutionary explanations of reproductive behavior. Early studies and human testis size suggest that human males secure/suffer frequent extrapair paternity. If these high rates are indeed true, it brings into question studies that use genealogies to infer human life history and the history of diseases since the recorded genealogies do not reflect paths of genetic inheritance. We measure the rate of nonpaternity in an old Afrikaner family in South Africa by comparing Y-chromosome short tandem repeats to the genealogy of males. In this population, the nonpaternity rate was 0.73%. This low rate is observed in other studies that matched genealogies to genetic markers and more recent studies that also find estimates below 1%. It may be that imposed religious morals have led to reduced extrapair activities in some historic populations. We also found that the mutation rate is high for this family, but is unrelated to age at conception.  相似文献   

19.
The discovery of archaeal viruses provides insights into the fundamental biochemistry and evolution of the Archaea. Recent studies have identified a wide diversity of archaeal viruses within the hot springs of Yellowstone National Park and other high-temperature environments worldwide. These viruses are often morphologically unique and code for genes with little similarity to other known genes in the biosphere, a characteristic that has complicated efforts to trace their evolutionary history. Comparative genomics combined with structural analysis indicate that spindle-shaped virus lineages might be unique to the Archaea, whereas other icosahedral viruses might share a common lineage with viruses of Bacteria and Eukarya. These studies provide insights into the evolutionary history of viruses in all three domains of life.  相似文献   

20.
The use of amphibians as models in ecological research has a rich history. From an early foundation in studies of amphibian natural history sprang generations of scientists who used amphibians as models to address fundamental questions in population and community ecology. More recently, in the wake of an environment that human disturbances rapidly altered, ecologists have adopted amphibians as models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change. Some of the characteristics of amphibians that make them useful models for studying these environmental problems are highlighted, including their trophic importance, environmental sensitivity, research tractability, and impending extinction. The article provides specific examples from the recent literature to illustrate how studies on amphibians have been instrumental in guiding scientific thought on a broad scale. Included are examples of how amphibian research has transformed scientific disciplines, generated new theories about global health, called into question widely accepted scientific paradigms, and raised awareness in the general public that our daily actions may have widespread repercussions. In addition, studies on amphibian declines have provided insight into the complexity in which multiple independent factors may interact with one another to produce catastrophic and sometimes unpredictable effects. Because of the complexity of these problems, amphibian ecologists have been among the strongest advocates for interdisciplinary research. Future studies of amphibians will be important not only for their conservation but also for the conservation of other species, critical habitats, and entire ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号