共查询到20条相似文献,搜索用时 0 毫秒
1.
Offermanns S 《Biological chemistry》2000,381(5-6):389-396
Activation of platelets plays a central role in hemostasis as well as in various thromboembolic diseases like myocardial infarction or stroke. Most platelet activating stimuli function through receptors which couple to heterotrimeric G proteins of the Gi, Gq and G12 families. Recent studies have elucidated the roles of individual G proteins in the regulation of platelet functions like shape change, aggregation and granule secretion. The signaling pathways mediated by heterotrimeric G proteins operate synergistically to induce a full activation of platelets. This review summarizes recent progress in the understanding of upstream regulation of platelet activation through G protein-coupled receptors. 相似文献
2.
Oldham WM Van Eps N Preininger AM Hubbell WL Hamm HE 《Nature structural & molecular biology》2006,13(9):772-777
Heptahelical receptors activate intracellular signaling pathways by catalyzing GTP for GDP exchange on the heterotrimeric G protein alpha subunit (G alpha). Despite the crucial role of this process in cell signaling, little is known about the mechanism of G protein activation. Here we explore the structural basis for receptor-mediated GDP release using electron paramagnetic resonance spectroscopy. Binding to the activated receptor (R*) causes an apparent rigid-body movement of the alpha5 helix of G alpha that would perturb GDP binding at the beta6-alpha5 loop. This movement was not observed when a flexible loop was inserted between the alpha5 helix and the R*-binding C terminus, which uncouples R* binding from nucleotide exchange, suggesting that this movement is necessary for GDP release. These data provide the first direct observation of R*-mediated conformational changes in G proteins and define the structural basis for GDP release from G alpha. 相似文献
3.
Assembly and trafficking of heterotrimeric G proteins 总被引:5,自引:0,他引:5
To be activated by cell surface G protein-coupled receptors, heterotrimeric G proteins must localize at the cytoplasmic surface of plasma membranes. Moreover, some G protein subunits are able to traffic reversibly from the plasma membrane to intracellular locations upon activation. This current topic will highlight new insights into how nascent G protein subunits are assembled and how they arrive at plasma membranes. In addition, recent reports have increased our knowledge of activation-induced trafficking of G proteins. Understanding G protein assembly and trafficking will lead to a greater understanding of novel ways that cells regulate G protein signaling. 相似文献
4.
Structure and function of heterotrimeric G proteins in plants 总被引:12,自引:0,他引:12
Heterotrimeric G proteins are mediators that transmit the external signals via receptor molecules to effector molecules. The G proteins consist of three different subunits: alpha, beta, and gamma subunits. The cDNAs or genes for all the alpha, beta, and gamma subunits have been isolated from many plant species, which has contributed to great progress in the study of the structure and function of the G proteins in plants. In addition, rice plants lacking the alpha subunit were generated by the antisense method and a rice mutant, Daikoku d1, was found to have mutation in the alpha-subunit gene. Both plants show abnormal morphology such as dwarfism, dark green leaf, and small round seed. The findings revealed that the G proteins are functional molecules regulating some body plans in plants. There is evidence that the plant G proteins participate at least in signaling of gibberellin at low concentrations. In this review, we summarize the currently known information on the structure of plant heterotrimeric G proteins and discuss the possible functions of the G proteins in plants. 相似文献
5.
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches in signaling pathways by coupling the activation of heptahelical receptors at the cell surface to intracellular responses. In the resting state, the G-protein alpha subunit (Galpha) binds GDP and Gbetagamma. Receptors activate G proteins by catalyzing GTP for GDP exchange on Galpha, leading to a structural change in the Galpha(GTP) and Gbetagamma subunits that allows the activation of a variety of downstream effector proteins. The G protein returns to the resting conformation following GTP hydrolysis and subunit re-association. As the G-protein cycle progresses, the Galpha subunit traverses through a series of conformational changes. Crystallographic studies of G proteins in many of these conformations have provided substantial insight into the structures of these proteins, the GTP-induced structural changes in Galpha, how these changes may lead to subunit dissociation and allow Galpha and Gbetagamma to activate effector proteins, as well as the mechanism of GTP hydrolysis. However, relatively little is known about the receptor-G protein complex and how this interaction leads to GDP release from Galpha. This article reviews the structural determinants of the function of heterotrimeric G proteins in mammalian systems at each point in the G-protein cycle with special emphasis on the mechanism of receptor-mediated G-protein activation. The receptor-G protein complex has proven to be a difficult target for crystallography, and several biophysical and computational approaches are discussed that complement the currently available structural information to improve models of this interaction. Additionally, these approaches enable the study of G-protein dynamics in solution, which is becoming an increasingly appreciated component of all aspects of G-protein signaling. 相似文献
6.
Heterotrimeric G proteins typically transduce signals from G protein-coupled receptors (GPCRs) to effector proteins. In the conventional G protein signaling paradigm, the G protein is located at the cytoplasmic surface of the plasma membrane, where, after activation by an agonist-bound GPCR, the GTP-bound Gα and free Gβγ bind to and regulate a number of well-studied effectors, including adenylyl cyclase, phospholipase Cβ, RhoGEFs and ion channels. However, research over the past decade or more has established that G proteins serve non-canonical roles in the cell, whereby they regulate novel effectors, undergo activation independently of a GPCR, and/or function at subcellular locations other than the plasma membrane. This review will highlight some of these non-canonical aspects of G protein signaling, focusing on direct interactions of G protein subunits with cytoskeletal and cell adhesion proteins, the role of G proteins in cell division, and G protein signaling at diverse organelles. 相似文献
7.
This work investigated the role of Ca2+ mobilization and heterotrimeric G protein activation in mediating angiotensin II-dependent tyrosine phosphorylation signaling patterns. We demonstrate that the predominant, angiotensin II-dependent, tyrosine phosphorylation signaling patterns seen in vascular smooth muscle cells are blocked by the intracellular Ca2+ chelator BAPTA-AM, but not by the Ca2+ channel blocker verapamil. Activation of heterotrimeric G proteins with NaF resulted in a divergent signaling effect; NaF treatment was sufficient to increase tyrosine phosphorylation levels of some proteins independent of angiotensin II treatment. In the same cells, NaF alone had no effect on other cellular proteins, but greatly potentiated the ability of angiotensin II to increase the tyrosine phosphorylation levels of these proteins. Two proteins identified in these studies were paxillin and Jak2. We found that NaF treatment alone, independent of angiotensin II stimulation, was sufficient to increase the tyrosine phosphorylation levels of paxillin. Furthermore, the ability of either NaF and/or angiotensin II to increase tyrosine phosphorylation levels of paxillin is critically dependent on intracellular Ca2+. In contrast, angiotensin II-mediated Jak2 tyrosine phosphorylation was independent of intracellular Ca2+ mobilization and extracellular Ca2+ entry. Thus, our data suggest that angiotensin II-dependent tyrosine phosphorylation signaling cascades are mediated through a diverse set of signaling pathways that are partially dependent on Ca2+ mobilization and heterotrimeric G protein activation. 相似文献
8.
Regulation of the enzymatic activity of heterotrimeric smooth muscle myosin phosphatase (SMMP) by MgATP was examined using phosphorylated myosin (P-myosin), heavy meromyosin (P-HMM), subfragment-1 (P-S1), and 20 kDa myosin light chain (P-MLC(20)) as substrates. The activity toward P-myosin and P-HMM was dose-dependently reduced by MgATP, whereas that toward P-S1 or P-MLC(20) was unchanged. The reduction was mainly due to a decrease in the affinity of SMMP for the substrate with the unchanged maximum activity. This regulation is entirely new in the respect that the responsible molecule is the substrate, not SMMP. Because P-myosin derived from myosin stored in 50% glycerol at -20 degrees C was insensitive to MgATP, the proper integrity of P-myosin is required. Coexisting myosin did not affect this regulation, but it inhibited the SMMP activity in the absence of MgATP. With P-myosin, the enzyme activity was biphasically steeply dependent on the ionic strength. This requires that determinations are conducted with a fixed ionic strength. The Q(10) value was about 2, which was quite similar to that for myosin light chain kinase. These results suggest that the rate of dephosphorylation of P-myosin is lowered at rest, but that it may reach a value comparable to the rate of phosphorylation of myosin in the sarcoplasm with the increased level of P-myosin during muscle activation. This regulation by MgATP may underlie the "latch mechanism" in some respects. 相似文献
9.
《Journal of receptor and signal transduction research》2013,33(3):139-143
AbstractResistance to inhibitors of cholinesterase 8 proteins (Ric-8A and Ric-8B) collectively bind the four classes of heterotrimeric G protein α subunits. Ric-8A and Ric-8B act as non-receptor guanine nucleotide exchange factors (GEFs) toward the Gα subunits that each binds in vitro and seemingly regulate diverse G protein signaling systems in cells. Combined evidence from worm, fly and mammalian systems has shown that Ric-8 proteins are required to maintain proper cellular abundances of G proteins. Ric-8 proteins support G protein levels by serving as molecular chaperones that promote Gα subunit biosynthesis. In this review, the evidence that Ric-8 proteins act as non-receptor GEF activators of G proteins in signal transduction contexts will be weighed against the evidence supporting the molecular chaperoning function of Ric-8 in promoting G protein abundance. I will conclude by suggesting that Ric-8 proteins may act in either capacity in specific contexts. The field awaits additional experimentation to delineate the putative multi-functionality of Ric-8 towards G proteins in cells. 相似文献
10.
11.
The superfamily of small, monomeric GTP-binding proteins, in Arabidopsis thaliana comprising 93 members, is classified into four families: Arf/Sar, Rab, Rop/Rac, and Ran families. All monomeric G proteins function as molecular switches that are activated by GTP and inactivated by the hydrolysis of GTP to GDP. GTP/GDP cycling is controlled by three classes of regulatory protein: guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Proteins of Arf family are primarily involved in regulation of membrane traffic and organization of the cytoskeleton. Arf1/Sar1 proteins regulate the formation of vesicle coat at different steps in the exocytic and endocytic pathways. Rab GTPases are regulators of vesicular transport. They are involved in vesicle formation, recruitment of cytoskeletal motor proteins, and in vesicle tethering and fusion. Rop proteins serve as key regulators of cytoskeletal reorganization in response to extracellular signals. Several data have also shown that Rop proteins play additional roles in membrane trafficking and regulation of enzymes activity. Ran proteins are involved in nucleocytoplasmic transport. 相似文献
12.
13.
14.
Yoshimura H Jones KA Perkins WJ Kai T Warner DO 《American journal of physiology. Lung cellular and molecular physiology》2001,281(3):L631-L638
We determined whether activation of G proteins can affect the force developed for a given intracellular Ca(2+) concentration ([Ca(2+)]; i.e., the Ca(2+) sensitivity) by mechanisms in addition to changes in regulatory myosin light chain (rMLC) phosphorylation. Responses in alpha-toxin-permeabilized canine tracheal smooth muscle were determined with Ca(2+) alone or in the presence of ACh, endothelin-1 (ET-1), or aluminum fluoride (AlF; acute or 1-h exposure). Acute exposure to each compound increased Ca(2+) sensitivity without changing the response to high [Ca(2+)] (maximal force). However, chronic exposure to AlF, but not to chronic ACh or ET-1, increased maximal force by increasing the force produced for a given rMLC phosphorylation. Studies employing thiophosphorylation of rMLC showed that the increase in force produced by chronic AlF exposure required Ca(2+) during activation to be manifest. Unlike the acute response to receptor agonists, which is mediated solely by increases in rMLC phosphorylation, chronic direct activation of G proteins further increases Ca(2+) sensitivity in airways by additional mechanisms that are independent of rMLC phosphorylation. 相似文献
15.
The effect of ligating the alpha2-macroglobulin signaling receptor (alpha2MSR) with receptor-recognized forms of alpha2M (alpha2M*) was studied with respect to phospholipase D (PLD) activity in murine macrophages, their plasma membranes, and nuclei. PLD activity in plasma membranes and nuclei increased linearly up to a ligand concentration of about 100 pM of either alpha2M* or a cloned and expressed receptor binding fragment (RBF). The RBF binding site mutant K1370A, which binds with high affinity to alpha2MSR, also increased nuclear PLD activity comparable to RBF and alpha2M*. Phorbol dibutyrate caused a two- to threefold stimulation of membrane and nuclear PLD activity, whereas PLD activity was nearly abolished by downregulation of protein kinase C; prior treatment with staurosporin, genestein, cyclosporin A, actinomycin D; or chelation of intracellular Ca2+. In permeabilized macrophages, isolated plasma membranes, and nuclei, GTP-gamma-S increased alpha2M*-stimulated PLD activity via a pertussis toxin-insensitive G protein and this effect was abolished on preincubation with GDP-beta-S. Incubation of plasma membranes with polyclonal antibody against sARFII, or the addition of cytosol which was immunoprecipitated with antibody against sARFII, greatly reduced alpha2M*-stimulated PLD activity in the presence of GTP-gamma-S. Preincubation of plasma membranes with GDP-beta-S prior to the addition of GTP-gamma-S and recombinant ARF1 significantly inhibited alpha2M*-stimulation of PLD activity. Nuclear PLD activity was maximally stimulated in the presence of both GTP-gamma-S and rARF1, whereas plasma membrane PLD activity was maximally stimulated in the presence of rARF1, GTP-gamma-S, RhoA, and ATP. In contrast, nuclear PLD activity was not affected by RhoA either alone or in combination with GTP-gamma-S or ATP. 相似文献
16.
17.
Klaus-Dieter Hinsch Carola Schwerdel Barbara Habermann Wolf-Bernhard Schill F. Müller-Schlsser Elvira Hinsch 《Molecular reproduction and development》1995,40(3):345-354
Heterotrimeric G proteins play important roles as signal transducing components in various mammalian sperm functions. We were interested in the distribution of G proteins in human sperm tails. Prior to membrane preparation, spermatozoa were separated from contaminating cells which are frequently present in human ejaculates. Enriched human sperm tail membranes were generated by using hypoosmotic swelling and homogenization procedures. Antisera against synthetic peptides were used to identify G proteins in immunoblots. AS 8, an antiserum directed against an amino acid sequence that is found in most G protein α-subunits, and A 86, which detects all known pertussis toxin-sensitive α-subunits, reacted specifically with a 40-kDa protein. Antisera against individual G protein α-subunits failed to detect any specific antigens in enriched tail membranes AS 36, recognizing the ã2-subunit of G proteins, identified a 35-kDa protein in sperm tail membranes. Antisera against the 36-kDa β1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein α-subunits nor G protein β-subunits were found in the cytosol. ADP ribosylation of spermatozoal membrane or cytosolic proteins revealed no pertussis toxin-sensitive α-subunits. However, membrane preparations of nonpurified human spermatozoa contained α2 subunits, as shown immunologically and by ADP ribosylation; they most probably derived from somatic cells which are frequently present in human ejaculates. Our results stress the fact that spermatozoa need to be purified before sperm membrane preparation to avoid misinterpretations caused by contaminating cells. Furthermore, we suggest that G proteins in membranes of human sperm tails belong to a novel subtype of G protein α-subunits; the putative β-subunit was identified as a β2-subunit. © 1995 Wiley-Liss, Inc. 相似文献
18.
Lin CS Liu X Tu R Chow S Lue TF 《Biochemical and biophysical research communications》2001,280(1):244-248
The p21 (cip1/waf1) protein induces cell cycle arrest through inhibition of the activity of cdk (cyclin dependent kinase)/cyclin complexes. Expression of p21 is induced in a p53-dependent manner by DNA damage. p21 can also be induced independently of p53 by phorbol ester or okadaic acid. In this study, we have addressed the role of the PKC (protein kinase C) signaling pathway in the induction of p21 in response to PMA (phorbol myristate acetate) and okadaic acid. Levels of p21 (protein and mRNA) rapidly increased (within approximately 4 h) in U937 cells treated with PMA. The PKC-specific inhibitors RO 31-8220 and GF109203X down-regulated PMA or okadaic acid-induced p21 expression. Following persistent PKC activation, p21 mRNA levels remained elevated, indicating an enhanced stability of the mRNA. Using actinomycin D to measure mRNA stability and p21 promoter luciferase assays to measure activity, we provide evidence to support a role for the PKC signaling pathway in p21 mRNA stability. Thus, PKC regulates the amount of p21 in U937 cells at the level of mRNA accumulation and translation. 相似文献
19.
Heterotrimeric G proteins are lipid-modified, peripheral membrane proteins that function at the inner surface of the plasma membrane (PM) to relay signals from cell-surface receptors to downstream effectors. Cellular trafficking pathways that direct nascent G proteins to the PM are poorly defined. In this report, we test the proposal that G proteins utilize the classical exocytic pathway for PM targeting. PM localization of the G protein heterotrimers alpha s beta 1 gamma 2 and alpha q beta 1 gamma 2 occurred independently of treatment of cells with Brefeldin A, which disrupts the Golgi, or expression of Sar1 mutants, which prevent the formation of endoplasmic reticulum to Golgi transport vesicles. Moreover, the palmitoylation of alpha q was unaffected by Brefeldin A treatment, even though the palmitoylation of SNAP25 was blocked by Brefeldin A. Non-palmitoylated mutants of alpha s and alpha q failed to stably bind to beta gamma and displayed a dispersed cytoplasmic localization when co-expressed with beta gamma. These findings support a refined model of the PM trafficking pathway of G proteins, involving assembly of the heterotrimer at the endoplasmic reticulum and transport to the PM independently of the Golgi. 相似文献
20.
《Journal of receptor and signal transduction research》2013,33(3):177-183
AbstractClassically heterotrimeric G proteins have been described as the principal signal transducing machinery for G-protein-coupled receptors. Receptor activation catalyzes nucleotide exchange on the Gα protein, enabling Gα-GTP and Gβγ-subunits to engage intracellular effectors to generate various cellular effects such as second messenger production or regulation of ion channel conductivity. Recent genetic and proteomic screens have identified novel heterotrimeric G-protein-interacting proteins and expanded their functional roles. This review highlights some examples of recently identified interacting proteins and summarizes how they functionally connect heterotrimeric G proteins to previously underappreciated cellular roles. 相似文献