首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-N-acetylglucosaminidase (EC 3.2.1.30) has been purified from Escherichia coli K-12 to near homogeneity based on polyacrylamide gel electrophoresis in both 0.5% sodium dodecyl sulfate and in 6 M urea at pH 8.5. The purified enzyme shows a pH optimum of 7.7 and the Km for p-nitrophenyl-beta-D-2-acetamido-2-deoxyglucopyranoside is 0.43 mM. The molecular weight of this enzyme, determined by both Sephadex gel filtration and by sodium dodecyl sulfate gel electrophoresis, is equivalent to 36,000. It is shown to be a soluble cytoplasmic enzyme. Studies on the substrate specificites of the purified enzyme indicate that this enzyme is an exo-beta-N-acetylglucosaminidase.  相似文献   

2.
Chicken ornithine transcarbamylase: purification and some properties   总被引:1,自引:0,他引:1  
Ornithine transcarbamylase [EC 2.1.3.3] has been purified from chick kidney to homogeneity. The molecular weight is 110,000 as determined by gel filtration. Sodium dodecylsulfate polyacrylamide gel electrophoresis of the enzyme showed that the enzyme exists as a trimer of identical subunits of 36,000 daltons like other mammalian species ornithine transcarbamylases. In 0.1 M triethanolamine/HCl, the apparent optimum pH of the purified enzyme was 7.5 in the presence of 5 mM ornithine. The curve shifted toward a more alkaline region with a decrease in ornithine concentration. The specific activity of the purified enzyme as 77 units at pH 7.5. The Km for carbamyl phosphate was 0.11 mM and the Km for ornithine was 1.21 mM. With an increase in pH, a decrease in Km values for ornithine and an increase in the extent of inhibition by ornithine were observed. On using antibody against bovine liver ornithine transcarbamylase, the precipitin lines for the chick and bovine enzymes showed a spur pattern. Even when excess amounts of the antibody were added, the chick enzyme did not lose the activity while the bovine enzyme activity was inhibited completely.  相似文献   

3.
A new flavoenzyme using molecular oxygen to oxidize L-glutamic acid has been purified to homogeneity, as judged by polyacrylamide gel electrophoresis, from the culture medium of Streptomyces endus. Hydrogen peroxide, 2-oxoglutaric acid and ammonia are formed as products. Among 25 amino acids tested including D-glutamic acid, L-glutamine and L-aspartic acid, only L-glutamic acid is converted. The molecular mass of the enzyme was estimated to be about 90 kDa by gel chromatography and 50 kDa by SDS/PAGE. The subunit contains 1 molecule noncovalently bound FAD. The absorption spectrum shows maxima at 273, 355 and 457 nm and the isoelectric point is at pH 6.2. The Km value for L-glutamic acid in air-saturated phosphate pH 7.0 was estimated to be 1.1 mM, the Km for oxygen was calculated to be 1.86 mM at saturating concentration of L-glutamic acid. The enzymic reaction is inhibited by Ag+ and Hg2+ ions. The enzyme described here distinctly differs from two microbial L-glutamate oxidases purified hitherto, with regard to extremely high substrate specificity and to the subunit structure.  相似文献   

4.
We have stabilized and studied choline acetyltransferase from the nematode Caenorhabditis elegans. The enzyme is soluble, and two discrete forms were resolved by gel filtration. The larger of these two forms (MW approximately 154,000) was somewhat unstable and in the presence of 0.5 M NaI was converted to a form indistinguishable from the "native" small form (MW approximately 71,000). We have purified the small form of the enzyme greater than 3,300-fold by a combination of gel filtration, ion-exchange chromatography, and nucleotide affinity chromatography. The purified preparation has a measured specific activity of 3.74 mumol/min/mg protein, and is free of acetylcholinesterase and acetyl-CoA hydrolase activities. The Vmax of the purified enzyme is stimulated by NaCl, with half-maximal stimulation at 80 mM NaCl. The Km for each substrate is also affected by salt, but in different manners from each other and the Vmax; the kinetic parameter Vmax/Km thus changes significantly as a function of the salt concentration.  相似文献   

5.
A carbamoyl-phosphate synthase has been purified from mycelia of Phycomyces blakesleeanus NRRL 1555 (-). The molecular weight of the enzyme was estimated to be 188,000 by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the enzyme consists of two unequal subunits with molecular weights of 130,000 and 55,000. The purified enzyme has been shown to be highly unstable. The carbamoyl-phosphate synthase from Phycomyces uses ammonia and not L-glutamine as a primary N donor and does not require activation by N-acetyl-L-glutamate, but it does require free Mg2+ for maximal activity. Kinetic studies showed a hyperbolic behavior with respect to ammonia (Km 6.34 mM), bicarbonate (Km 10.5 mM) and ATP.2 Mg2+ (Km 0.93 mM). The optimum pH of the enzyme activity was 7.4-7.8. The Phycomyces carbamoyl-phosphate synthase showed a transition temperature at 38.5 degrees C. It was completely indifferent to ornithine, cysteine, glycine, IMP, dithiothreitol, glycerol, UMP, UDP and UTP. The enzyme was inhibited by reaction with 5 mM N-ethylmaleimide.  相似文献   

6.
D-Malic enzyme of Pseudomonas fluorescens   总被引:3,自引:0,他引:3  
By the enrichment culture technique 14 gram-negative bacteria and two yeast strains were isolated that used D(+)-malic acid as sole carbon source. The bacteria were identified as Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Klebsiella aerogenes. In cell-free extracts of P. fluorescens and P. putida the presence of malate dehydrogenase, D-malic enzyme (NAD-dependent) and L-malic enzyme (NADP-dependent) was demonstrated. D-Malic enzyme from P. fluorescens was purified. Stabilization of the enzyme by 50 mM ammonium sulphate an 1 mM EDTA was essential. Preparation of D-malic enzyme that gave one band with disc gel electrophoresis showed a specific activity of 4-5 U/mg. D-Malic enzyme requires divalent cations. The Km values were for malate Km = 0.3 mM and for NAD Km = 0.08 mM. The pH optimum for the reaction was found to be in the range of pH 8.1 to pH 8.8. D-Malic enzyme is partially inhibited by oxaloacetic acid, meso-tartaric acid, D-lactic acid and ATP. Determined by gel filtration and gradient gel electrophoresis, the molecular weight was approximately 175 000.  相似文献   

7.
delta 1-Pyrroline-5-carboxylate reductase (L-proline:NAD(P)+ 5-oxidoreductase, EC 1.5.1.2) has been purified from rat lens and biochemically characterized. Purification steps included ammonium sulfate fractionation, affinity chromatography on Amicon Matrex Orange A, and gel filtration with Sephadex G-200. These steps were carried out at ambient temperature (22 degrees C) in 20 mM sodium phosphate/potassium phosphate buffer (pH 7.5) containing 10% glycerol, 7 mM mercaptoethanol and 0.5 mM EDTA. The enzyme, purified to apparent homogeneity, displayed a molecular weight of 240 000 by gel chromatography and 30 000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme is composed of eight subunits. The purified enzyme displays a pH optimum between 6.5 and 7.1 and is inhibited by heavy metal ions and p-chloromercuribenzoate. Kinetic studies indicated Km values of 0.62 mM and 0.051 mM for DL-pyrroline-5-carboxylate as substrate when NADH and NADPH respectively were employed as cofactors. The Km values for the cofactors NADH and NADPH with DL-pyrroline-5-carboxylate as substrate were 0.37 mM and 0.006 mM, respectively. With L-pyrroline-5-carboxylate as substrate, Km values of 0.21 mM and 0.022 mM were obtained for NADH and NADPH, respectively. Enzyme activity is potentially inhibited by NADP+ and ATP, suggesting that delta 1-pyrroline-5-carboxylate reductase may be regulated by the energy level and redox state of the lens.  相似文献   

8.
Bacillus pumilus PS213 isolated from bovine ruminal fluid was able to transform ferulic acid and p-coumaric acid to 4-vinylguaiacol and 4-vinylphenol, respectively, by nonoxidative decarboxylation. The enzyme responsible for this activity has been purified and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extract from a culture induced by ferulic acid or p-coumaric acid shows three bands that are not present in the crude extract of an uninduced culture, while the purified enzyme shows a single band of 23 kDa; the molecular mass calculated by size exclusion chromatography is 45 kDa. Enzyme activity is optimal at 37 degrees C and pH 5.5 and is not enhanced by any cation. Kinetic studies indicated a Km of 1.03 mM and a Vmax of 0.19 mmol.min-1/mg.liter-1 for ferulic acid and a Km of 1.38 mM and a Vmax of 0.22 mmol.min-1/mg.liter-1 for p-coumaric acid.  相似文献   

9.
We highly purified O-acetylserine sulfhydrylase from the glutamate-producing bacterium Corynebacterium glutamicum. The molecular mass of the purified enzyme was 34,500 as determined by SDS-polyacrylamide gel electrophoresis, and 70,800 as determined by gel filtration chromatography. It had an apparent Km of 7.0 mM for O-acetylserine and a Vmax of 435 micromol min-1 (mg x protein)-1. This is the first report of the cysteine biosynthetic enzyme of C. glutamicum in purified form.  相似文献   

10.
Mevalonate-5-pyrophosphate decarboxylase [ATP:5-diphosphomevalonate carboxy-lyase (dehydrating), EC 4.1.1.33] has been purified 5800 times from chicken liver and obtained in a stable and highly purified form. The protein is a dimer of molecular weight 85400 +/- 1941, and its subunits were not resolved by gel electrophoresis in denaturing conditions. The purified enzyme does not require the presence of SH-containing reagents for either activity or stability. The enzyme shows a high specificity for adenosine 5'-triphosphate (ATP) and requires for activity a divalent metal cation, Mg2+ being most effective. The optimum pH for the enzyme ranges from 4.0 to 6.5. Inhibitory effects for the enzyme activity were detected by citrate, phthalate, and phosphate. The isoelectric point, as determined by column chromatofocusing, is 4.8. The kinetics are hyperbolic for both substrates, showing a sequential mechanism; true Km values of 0.0141 mM and 0.504 mM have been obtained for mevalonate-5-pyrophosphate and ATP, respectively.  相似文献   

11.
A galactosyltransferase, which transfers galactose from UDP-galactose to N-acetylglucosamine, was purified 286,000-fold to homogeneity with 40% yield from human plasma by repeated affinity chromatography on alpha-lactalbumin-Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band with molecular weight of 49,000. The enzyme is a glycoprotein with 11% by weight carbohydrate, which seems to have only asparagine-N-acetylglucosamine linkage-type carbohydrate chains. The enzyme showed characteristic changes in activity at different alpha-lactalbumin concentrations, indicating that the enzyme is the A protein of lactose synthetase. Km values for the substrates were found to be 0.056 mM for UDP-galactose, 3.2 mM for GlcNAc, and 0.44 mM for Mn2+, and in the presence of alpha-lactalbumin, 3.4 mM for Glc, and 0.20 mM for Mn2+. The activity of the enzyme was neutralized by anti-enzyme antibody, but the antibody did not neutralize the bovine milk galactosyltransferase (A protein) activity.  相似文献   

12.
The cationic form of beta-galactosidase (EC 3.2.1.23) from the germinating seeds of Vigna sinensis has been separated from its other isoforms by DEAE-cellulose (DE-52) column chromatography and further purified by gel filtration and affinity chromatography. Polyacrylamide gel electrophoresis of the purified enzyme imparted a single protein band. The molecular mass of the enzyme as determined by Sephadex G-150 gel filtration is 58,800 Da. The optimum temperature and the optimum pH are 60 degrees C and 4.5, respectively. Most of the metal ions tested were inhibitory to the enzyme activity. The enzyme has Km for p-nitrophenyl beta-D-galactoside and o-nitrophenyl beta-D-galactoside of 0.56 and 2.0 mM, respectively. The Ki values of galactose and lactose are 2.4 and 70.0 mM, respectively. The energy of activation of PNPG for the enzyme is 10.3 kcal/mol.  相似文献   

13.
Arogenate dehydrogenase, the terminal enzyme of tyrosine biosynthesis in Streptomyces phaeochromogenes, was purified to homogeneity by a five-step procedure. The enzyme is a dimer of Mr 57 600 as determined by dodecyl sulfate polyacrylamide gel electrophoresis after cross-linking of the monomers, or of 66 300 as found by gel permeation chromatography, and consists of two identical subunits of Mr 28 100. The pI of the enzyme is 4.45, and the Km values are 0.105mM for arogenate and 0.01 mM for NAD.  相似文献   

14.
In human liver, almost 90% of malic enzyme activity is located within the extramitochondrial compartment, and only approximately 10% in the mitochondrial fraction. Extramitochondrial malic enzyme has been isolated from the post-mitochondrial supernatant of human liver by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose, ADP-Sepharose-4B and Sephacryl S-300 to apparent homogeneity, as judged from polyacrylamide gel electrophoresis. The specific activity of the purified enzyme was 56 mumol.min-1.mg protein-1, which corresponds to about 10,000-fold purification. The molecular mass of the native enzyme determined by gel filtration is 251 kDa. SDS/polyacrylamide gel electrophoresis showed one polypeptide band of molecular mass 63 kDa. Thus, it appears that the native protein is a tetramer composed of identical-molecular-mass subunits. The isoelectric point of the isolated enzyme was 5.65. The enzyme was shown to carboxylate pyruvate with at least the same rate as the forward reaction. The optimum pH for the carboxylation reaction was at pH 7.25 and that for the NADP-linked decarboxylation reaction varied with malate concentration. The Km values determined at pH 7.2 for malate and NADP were 120 microM and 9.2 microM, respectively. The Km values for pyruvate, NADPH and bicarbonate were 5.9 mM, 5.3 microM and 27.9 mM, respectively. The enzyme converted malate to pyruvate (at optimum pH 6.4) in the presence of 10 mM NAD at approximately 40% of the maximum rate with NADP. The Km values for malate and NAD were 0.96 mM and 4.6 mM, respectively. NAD-dependent decarboxylation reaction was not reversible. The purified human liver malic enzyme catalyzed decarboxylation of oxaloacetate and NADPH-linked reduction of pyruvate at about 1.3% and 5.4% of the maximum rate of NADP-linked oxidative decarboxylation of malate, respectively. The results indicate that malic enzyme from human liver exhibits similar properties to the enzyme from animal liver.  相似文献   

15.
The peroxisomal acyl/alkyl dihydroxyacetone-phosphate reductase (EC 1.1.1.101) was solubilized and purified 5500-fold from guinea pig liver. The enzyme could be solubilized by detergents only at high ionic strengths in presence of the cosubstrate NADPH. Peroxisomes, isolated from liver by a Nycodenz step density gradient centrifugation, were first treated with 0.2% Triton X-100 to remove the soluble and a large fraction of the membrane-bound proteins. The enzyme was solubilized from the resulting residue by 0.05% Triton X-100, 1 M KCl, 0.3 mM NADPH, and 2 mM dithiothreitol in Tris-HCl buffer (10 mM) at pH 7.5. The enzyme was further purified after precipitating it by dialyzing out the KCl and then resolubilized with 0.8% octyl glucoside in 1 M KCl (plus NADPH and dithiothreitol). The second solubilized enzyme was purified to homogeneity (370-fold from peroxisomes) by gel filtration in a Sepharose CL-6B column followed by affinity chromatography on an NADPH-agarose gel matrix. NADPH-agarose was prepared by reacting periodate-oxidized NADP+ to adipic acid dihydrazide-agarose and then reducing the immobilized NADP+ with NaBH4. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme showed a single homogeneous band with an apparent molecular weight of 60,000. The molecular weight of the native enzyme was estimated to be 75,000 by size exclusion chromatography. Amino acid analysis of the purified protein showed that hydrophobic amino acid comprised 27% of the molecule. The Km value of the purified enzyme for hexadecyldihydroxyacetone phosphate (DHAP) was 21 microM, and the Vmax value in the presence of 0.07 mM NADPH was 67 mumol/min/mg. The turnover number (Kcat), after correcting for the isotope effect of the cosubstrate NADP3H, was calculated to be 6,000 mol/min/mol of enzyme, assuming the enzyme has a molecular weight of 60,000. The purified enzyme also used palmitoyldihydroxyactone phosphate as a substrate (Km = 15.4 microM, and Vmax = 75 mumol/min/mg). Palmitoyl-DHAP competitively inhibited the reduction of hexadecyl-DHAP, indicating that the same enzyme catalyzes the reduction of both acyl-DHAP and alkyl-DHAP. NADH can substitute for NADPH, but the Km of the enzyme for NADH (1.7 mM) is much higher than that for NADPH (20 microM). The purified enzyme is competitively (against NADPH) inhibited by NADP+ and palmitoyl-CoA. The enzyme is stable on storage at 4 degrees C in the presence of NADPH and dithiothreitol.  相似文献   

16.
Pig liver phosphomevalone kinase. 1. Purification and properties   总被引:2,自引:0,他引:2  
Pig liver phosphomevalonate kinase (EC 2.7.4.2) has been purified to homogeneity as shown by polyacrylamide gel electrophoresis. The molecular weight estimates range from 21,000 to 22,500. Each molecule is composed of one polypeptide chain. The presence of SH-containing reagents is essential for the preservation of enzymes activity at all steps in the purification. The enzyme shows absolute specificity for ATP and requires for activity a divalent metal cation, Mg2+ being most effective. The optimum pH for the enzyme ranges from 7.5 to over 9.5. Kinetics are hyperbolic for both substrates, showing a sequential mechanism; true Km values of 0.075 mM and 0.46 mM have been obtained for phosphomevalonate and ATP, respectively. Amino acid composition shows a high content of acid amino acids, one cysteine residue per molecule of enzyme, and the absence of methionine. The results obtained suggest that the enzyme plays no regulatory function in cholesterol biosynthesis in pig liver, although a variable enzyme content was detected in different livers.  相似文献   

17.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38-39 kDa, as judged by SDS-PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5+/-4.5 microM and uronic acids, such as D-galacturonic acid (Km=3.79+/-0.5 mM) and D-glucuronic acid (Km=4.67+/-0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP(+). The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H(2)O(2), suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

18.
D-Serine dehydratase [EC 4.2.1.14] was purified from a strain of Klebsiella pneumoniae 140-fold from crude extract with a yield of 5%. This enzyme catalyzed formation of pyruvate and ammonia not only from D-serine but also from L-serine, and also catalyzed the formation of alpha-ketobutyrate and ammonia from D-threonine. Km values for D-serine, L-serine, and D-threonine were 2.8 mM, 20 mM, and 3.6 mM, respectively. Km for pyridoxal 5'-phosphate was 2.5 micron. The molecular weight was estimated to be 46,000 by Sephadex G-150 gel filtration and 40,000 by SDS-polyacrylamide gel electrophoresis. This enzyme was inducible by D-serine. Induction by casamino acids appeared to depend on the presence of D-serine.  相似文献   

19.
3-Ketovalidoxylamine A C-N lyase was purified about 900-fold from the cell-free extract of Flavobacterium saccharophilum by ammonium sulfate fractionation, column chromatography on CM cellulose and gel filtration on Sephacryl S-200. The purified enzyme was homogeneous as judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 36,000 by gel filtration on Sephacryl S-200 and by SDS polyacrylamide gel electrophoresis, indicating that the enzyme is a monomer. The optimum pH was found at 9.0. The enzyme activity was inhibited by EDTA or ethyleneglycol bis(beta-aminoethylether)-N,N'-tetraacetic acid and the inhibition was reversed by Ca2+ ion. The enzyme was able to eliminate p-nitroaniline or p-nitrophenol from p-nitrophenyl-3-ketovalidamine (IV) or p-nitrophenyl-alpha-D-3-ketoglucoside (VI), but not from p-nitrophenyl-1-epi-3-ketovalidamine or p-nitrophenyl-beta-D-3-ketoglucoside. Apparent Km values for IV and VI were 0.24 mM and 0.5 mM, respectively.  相似文献   

20.
The isocitrate dehydrogenase from bass liver was purified to homogeneity by gel filtration, affinity and ion exchange chromatographies. The molecular weight was estimated by gel filtration chromatography to about 120,000. Analysis of the enzyme on sodium dodecyl sulphate polyacrylamide gel electrophoresis showed it to be a dimeric protein. The enzyme showed maximum activity in the pH range between 7.0 and 8.0 while its maximum activity was at pH 7.5. DL-Isocitrate and Mn2+ stabilized the enzyme, while NADP had the opposite effect. The Km for isocitrate was 0.31 mM and the Km for NADP was 36 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号