首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitotic PtK1cells were treated both during mid-anaphase and at furrow initiation with the potent microtubule (MT) stabilizing agent, taxol, to determine the role of MTs in the rate of cytokinetic events. Rates of cytokinesis (μm/min) were measured by changes in furrow diameter. Incubation of PtK1cells during mid-anaphase with 5 μg/ml taxol slows the rate of cytokinesis by an average of 43%. Instead of furrow initiation to midbody formation taking an average of 10.7 min (1.6 μm/min), furrowing to midbody formation was completed in an average of 19.0 min (0.9 μm/min), which does not include the 7-min period between taxol application in mid-anaphase and furrow initiation. Application of 5 μg/ml taxol to cells at furrow initiation had a reduced effect on decreasing the rate of cytokinesis and midbody formation; furrowing to midbody formation took an average of 14.6 min (1.2 μm/min). These data suggest that delays in the rate of cytokinesis is dependent on the mitotic stage at which taxol is applied. Ultrastructural analysis shows that taxol treatment of anaphase cells prevents midbody formation during early G1, yet MT number and organization in the furrowed region is not significantly altered from untreated cells. There is little change in the organization and amount of contractile ring microfilaments, yet filaments are also found parallel to midbody MTs. Our results may be explained by the fact that taxol tends to stabilize MTs which probably affects the rate at which they depolymerize in the terminal phases of cytokinesis. Reduction in depolymerization rates of a stable population of MTs could serve to regulate the rate of cytokinesis.  相似文献   

2.
S-100 proteins are a group of three 21-kilodalton, acidic, Ca2+-binding proteins of the "E-F hand" type shown to regulate several cell activities, including microtubule (MT) assembly-disassembly. We show here that S-100 proteins interact with MTs assembled from either whole microtubule protein or purified tubulin, both in the absence and in the presence of the MT-stabilizing drug taxol. Evidence for the binding of S-100 to MTs comes from both kinetic (turbidimetric) and binding studies. Kinetically, S-100 enhances the disassembly of steady-state MTs in the presence of high concentrations of colchicine or vinblastine at 10 microM free Ca2+ and disassembles taxol-stabilized MTs at high Ca2+ concentrations. Experiments performed using 125I-labeled S-100 show that S-100 binds Ca2+ independently to a single set of sites on taxol-stabilized MTs assembled from pure tubulin with an affinity of 6 x 10(-5) M and a stoichiometry of 0.15 mol of S-100/mol of polymerized tubulin. Under certain conditions, S-100 proteins also cosediment with MTs prepared by coassembly of S-100 with MTs, probably in the form of an S-100-tubulin complex. Because S-100 binds to MTs under conditions where this protein fraction does not produce observable effects on the kinetics of assembly-disassembly, e.g., in the absence of Ca2+ at pH 6.7, we conclude that the S-100 binding to MTs does not affect the stability of MTs per se, but rather creates conditions for increased sensitivity of MTs to Ca2+.  相似文献   

3.
Membrane ghosts prepared from tobacco BY-2 cells bound microtubules(MTs) that had been assembled in an extract of evacuolated protoplastsof the same cells and, as a result, the number of MTs on theghosts increased. MTs that had formed on the ghosts after incubationwith the extract were more sensitive to cold-treatment thanthe preexisting MTs. Binding of MTs was also observed on ghoststhat had been treated with a cold solution of Ca2+ to removepreexisting MTs. This result suggests that a system that mediatedthe binding of MTs to the plasma membrane remained on the ghosts.No binding of MTs was observed to ghosts that had been treatedwith trypsin. Preexisting MTs were removed by treatment with0.6 M KCl or 0.1 M Na2CO3. Membrane ghosts treated with KClor Na2CO3 did not bind MTs that had been assembled in the extractin the absence of taxol. However, ghosts prepared in the sameway did bind MTs that had been assembled in the extract in thepresence of taxol. It seems that treatment with KCl or Na2CO3removes a component(s) from the system that mediates the bindingof MTs to the plasma membrane and that a factor(s), associatedwith MTs assembled in the extract in the presence of taxol,compensates for the loss of this component(s) from the system. (Received August 12, 1993; Accepted January 26, 1994)  相似文献   

4.
Reports on how changes in microtubule (MT) distribution or polymerization affect the distribution of intermediate filaments (IFs) differ. Therefore, we have used cytoimmunofluorescence techniques and electron microscopy to systematically examine and compare the arrangements of MTs and IFs in cultures of chick embryo fibroblasts under the following conditions: at different times during the cell cycle, in the presence of Colcemid or of taxol, in the presence of both drugs in succession or simultaneously in varying ratios, and during recovery from treatment with Colcemid or taxol. We have found that depolymerization of MTs by 1 microM Colcemid resulted in the rapid formation of massive IF-cables, structures distinct from "collapsed IFs" or "juxtanuclear coils." Neither the rapid formation of IF-cables nor their dispersion during recovery required protein synthesis. Cells treated with 10 microM taxol rapidly formed MT-bundles, as well as aggregates of intertwining IFs, termed "IF-skeins." MT-bundles and IF-skeins displayed strikingly complementary distributions. This reciprocal distribution of packed MTs and IFs was also obvious in untreated anaphase and telophase cells. When 10 microM taxol and 1 microM Colcemid were applied simultaneously, the complementary distributions of MT-bundles and IF-skeins mimicked those in taxol alone. This ability of taxol to block Colcemid's effects was concentration dependent. Decreasing the taxol: Colcemid ratio allowed the depolymerization of MTs, which correlated with the formation of IF-cables.  相似文献   

5.
We have studied the effect of taxol on mitosis in Haemanthus endosperm. Immuno-Gold Stain (IGS), a new immunocytochemical method (17), was used to visualize microtubules (MTs) in the light microscope. Observations on MT arrangements were correlated with studies in vivo. Chromosome movements are affected in all stages of mitosis which progresses over at least 10(4) range of taxol concentrations. The three most characteristic effects on MTs are: (a) enhancement of the lateral associations between MTs, seen especially during the reorganization of the polar region of the spindle, (b) promotion of MT assembly, leading to the formation of additional MTs in the spindle and MT arrays in the cytoplasm, and (c) an increase in MT stability, demonstrated in their increased cold resistance. In this report, the emphasis is on the primary, immediate effects, occurring in the first 30 min of taxol action. Effects are detected after a few mins, are reversible, and are concentration/time dependent. The spindle and phragmoplast are remarkably modified due to the enhancement of lateral associations of MTs and the formation of abundant nonkinetochore and polar, asterlike MTs. The equatorial region of the interzone in anaphase may be entirely depleted of MTs, and the spindle may break perpendicular to the spindle axis. Mitosis is completed in these conditions, providing evidence for the motile autonomy of each half-spindle. Trailing chromosome arms in anaphase are often stretched and broken. Chromosome fragments are transported away from the polar regions, i.e., in the direction opposite to that expected (5, 6). This supplies the first direct evidence of pushing by elongating MTs in an anastral higher plant spindle. These observations draw attention to the relation between the lateral association of MT ends to assembly/disassembly and to the role of such an interaction in spindle function and organization.  相似文献   

6.
The static head method for determining the charge stoichiometry (the number of moles of charge translocated per mole of substrate) of a coupled transport system is presented. The method involves establishing experimental conditions under which a membrane potential exactly balances the thermodynamic driving force of a known substrate gradient. The charge stoichiometry can then be calculated from thermodynamic principles. In contrast to the usual steady-state method for determining charge stoichiometry in cell suspensions and vesicle preparations, the static head method is applicable to systems which are not capable of maintaining a constant membrane potential over time. The charge stoichiometries of two renal sodium coupled D-glucose transporters previously identified in brush-border membrane vesicle preparations from the outer cortex (early proximal tubule) and outer medulla (late proximal tubule) are determined. The charge stoichiometries of these transporters are in good agreement with their sodium/glucose coupling ratios arguing against the possibility that glucose transport is coupled to ions other than sodium in these membranes.  相似文献   

7.
The static head method for determining the charge stoichiometry (the number of moles of charge translocated per mole of substrate) of a coupled transport system is presented. The method involves establishing experimental conditions under which a membrane potential exactly balances the thermodynamic driving force of a known substrate gradient. The charge stoichiometry can then be calculated from thermodynamic principles. In contrast to the usual steady-state method for determining charge stoichiometry in cell suspensions and vesicle preparations, the static head method is applicable to systems which are not capable of maintaining a constant membrane potential over time. The charge stoichiometries of two renal sodium coupled d-glucose transporters previously identified in brush-border membrane vesicle preparations from the outer cortex (early proximal tubule) and outer medulla (late proximal tubule) are determined. The charge stoichiometries of these transporters are in good agreement with their sodium/glucose coupling ratios arguing against the possibility that glucose transport is coupled to ions other than sodium in these membranes.  相似文献   

8.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

9.
Tau, a family of microtubule-associated proteins (MAPs), stabilizes microtubules (MTs) and regulates their dynamics. Tau isoforms regulate MT dynamic instability differently: 3-repeat tau is less effective than 4-repeat tau at suppressing the disassembly of MTs. Here, we report another tau-isoform-dependent phenomenon, revealed by fluorescence recovery after photobleaching measurements on a BODIPY-conjugated taxol bound to MTs. Saturating levels of recombinant full-length 3-repeat and 4-repeat tau both cause taxol mobility to be remarkably sensitive to taxol concentration. However, 3-repeat tau induces 2.5-fold faster recovery (∼450 s) at low taxol concentrations (∼100 nM) than 4-repeat tau (∼1000 s), indicating that 3-repeat tau decreases the probability of taxol rebinding to its site in the MT lumen. Finding no tau-induced change in the MT-binding affinity of taxol, we conclude that 3-repeat tau either competes for the taxol binding site with an affinity of ∼1 μM or alters the MT structure so as to facilitate the passage of taxol through pores in the MT wall.  相似文献   

10.
Treatment of interphase apical cells of Sphacelaria rigidula Kützing with 10 μmol L?1 taxol for 4 h induced drastic changes in microtubule (MT) organization. In normal cells these MTs converge on the centrosomes and are nucleated from the pericentriolar area. After treatment, the endoplasmic, perinuclear and centrosome‐associated MT almost disappeared, and a massive assembly of cortical/subcortical, well‐organized MT bundles was observed. The bundles tended to be axially oriented, usually following the cylindrical wall, although other orientations were not excluded. The MTs in the apical part of the cell seemed to reach the cortex of the apical dome, sometimes bending to follow its curvature, whereas those in the basal portion of the cell terminated close to the transverse wall. Mitotic cells were also highly affected. Typical metaphase stages were very rarely found, and typical anaphase arrangements of chromosomes were completely absent. The chromosomes usually appeared to be dispersed singly or in small groups. Different atypical mitotic configurations were observed, depending on the stage of the cell cycle when the treatment started. The position and the orientation of the atypical mitotic spindles was disturbed. The nuclear envelope was completely disintegrated. The separation of the duplicated centrioles, as well as their usual perinuclear position, was also disturbed. Cortical MT bundles similar to those found in interphase cells were not found in the affected mitotic cells. In contrast, numerous MTs, without definite focal points, were found in the pericentriolar areas. Cytokinesis was inhibited by taxol treatment. The perinuclear and centrosome‐associated MTs found in mitotic cells were gradually replaced by a MT system similar to that of interphase cells. When the cytokinetic diaphragm had already been initiated when taxol treatment began, MTs were found on the cytokinetic plane, a phenomenon not observed in normal untreated cells. The results show clearly that: (i) in interphase cells the ability of centrosomes to nucleate MTs is intensely disturbed by taxol; (ii) centrosome dynamics in MT nucleation vary during the cell cycle; and (iii) taxol strongly affects mitosis and cytokinesis. In addition, it seems that the cortical/subcortical cytoplasm of interphase cells assumes the capacity to form numerous MT bundles.  相似文献   

11.
Microtubules (MTs) are essential for the maintenance of asymmetric cell shape and motility of fibroblasts. MTs are considered to function as rails for organelle transport to the leading edge. We investigated the relationship between the motility of Vero fibroblasts and saltatory movements of particles in their lamella Fibroblasts extended their leading edges into the experimental wound at a rate of 20+/-11 microm/h. Intracellular particles in the front parts of the polarized fibroblasts moved saltatorily mainly along the long axis of the cells. MT depolymerization induced by the nocodazole at a high concentration (1.7 microM) resulted in the inhibition of both fibroblast motility and saltatory movements of the particles. Taxol (1 microM) inhibited the fibroblast locomotion but not the saltatory movements. The saltatory movement pattern was disorganized by taxol by decreasing the portion of longitudinal saltations and consequently by increasing the part of saltations perpendicular to the cell long axis. This effect may be explained by disorganization of the MT network resulting from the inhibition of dynamic instability. To further investigate the relationships between the MT dynamics instability, saltatory movements, and fibroblast locomotion, we treated fibroblasts with microtubule drugs at low concentration (nocodazole, 170 nM; vinblastine, 50 nM; and taxol, 50 nM). All these drugs induced rapid disorganization of the saltatory movements and decreased the rate of cell locomotion. Simultaneously, the amount of acetylated (stable) MTs increased. The treatment also induced reversible changes in the actin meshwork. We suggest that decrease in the fibroblast locomotion rate in the case of MT stabilization occurred because of the appearance of numerous free MTs. Saltations along free MTs are poorly organized and, as a result, the number of organelles reaching the fibroblast leading edge decreases.  相似文献   

12.
Metallothioneins (MTs) are ubiquitous proteins with the capacity to bind heavy metal ions (mainly Cd, Zn or Cu), and they have been found in animals, plants, eukaryotic and prokaryotic micro‐organisms. We have carried out a comparative analysis of ciliate MTs (Tetrahymena species) to well‐known MTs from other organisms, discussing their exclusive features, such as the presence of aromatic amino acid residues and almost exclusive cysteine clusters (CCC) present in cadmium‐binding metallothioneins (CdMTs), higher heavy metal‐MT stoichiometry values, and a strictly conserved modular–submodular structure. Based on this last feature and an extensive gene duplication, we propose a possible model for the evolutionary history of T. thermophila MTs. We also suggest possible functions for these MTs from consideration of their differential gene expressions and discuss the potential use of these proteins and/or their gene promoters for designing molecular or whole‐cell biosensors for a fast detection of heavy metals in diverse polluted ecosystems.  相似文献   

13.
The microtubule (MT) cytoskeleton is an important part of the tip-growth machinery in legume root hairs. Here we report the effect of Nod factor (NF) on MTs in root hairs of Medicago truncatula. In tip-growing hairs, the ones that typically curl around rhizobia, NF caused a subtle shortening of the endoplasmic MT array, which recovered within 10 min, whereas cortical MTs were not visibly affected. In growth-arresting root hairs, endoplasmic MTs disappeared shortly after NF application, but reformed within 20 min, whereas cortical MTs remained present in a high density. After NF treatment, growth-arresting hairs were swelling at their tips, after which a new outgrowth formed that deviated with a certain angle from the former growth axis. MT depolymerization with oryzalin caused a growth deviation similar to the NF; whereas, combined with NF, oryzalin increased and the MT-stabilizing drug taxol suppressed NF-induced growth deviation. The NF-induced disappearance of the endoplasmic MTs correlated with a loss of polar cytoarchitecture and straight growth directionality, whereas the reappearance of endoplasmic MTs correlated with the new set up of polar cytoarchitecture. Drug studies showed that MTs are involved in determining root hair elongation in a new direction after NF treatment.  相似文献   

14.
Microtubules (MTs) are hollow cylindrical polymers composed of alphabeta-tubulin heterodimers that align head-to-tail in the MT wall, forming linear protofilaments that interact laterally. We introduce a probe of the interprotofilament interactions within MTs and show that this technique gives insight into the mechanisms by which MT-associated proteins (MAPs) and taxol stabilize MTs. In addition, we present further measurements of the mechanical properties of MT walls, MT-MT interactions, and the entry of polymers into the MT lumen. These results are obtained from a synchrotron small angle x-ray diffraction (SAXRD) study of MTs under osmotic stress. Above a critical osmotic pressure, P(cr), we observe rectangular bundles of MTs whose cross sections have buckled to a noncircular shape; further increases in pressure continue to distort MTs elastically. The P(cr) of approximately 600 Pa provides, for the first time, a measure of the bending modulus of the interprotofilament bond within an MT. The presence of neuronal MAPs greatly increases P(cr), whereas surprisingly, the cancer chemotherapeutic drug taxol, which suppresses MT dynamics and inhibits MT depolymerization, does not affect the interprotofilament interactions. This SAXRD-osmotic stress technique, which has enabled measurements of the mechanical properties of MTs, should find broad application for studying interactions between MTs and of MTs with MAPs and MT-associated drugs.  相似文献   

15.
Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism.  相似文献   

16.
Phosphatidylserine (PS), which is normally localized in the cytoplasmic leaflet of the membrane, flip-flops to the external leaflet during aging of, or trauma to, cells. A fraction of this PS undergoes shedding into the extracellular milieu. PS externalization and shedding change during maturation of erythroid cells and affect the functioning, senescence and elimination of mature RBCs. Several lines of evidence suggest dependence of PS shedding on intracellular Ca concentration as well as on interaction between plasma membrane phospholipids and microtubules (MTs), the key components of the cytoskeleton. We investigated the effect of Ca flux and MT assembly on the distribution of PS across, and shedding from, the membranes of erythroid precursors. Cultured human and murine erythroid precursors were treated with the Ca ionophore A23187, the MT assembly enhancer paclitaxel (Taxol) or the inhibitor colchicine. PS externalization and shedding were measured by flow cytometry and the cholesterol/phospholipids in RBC membranes and supernatants, by 1H-NMR. We found that treatment with Taxol or colchicine resulted in a marked increase in PS externalization, while shedding was increased by colchicine but inhibited by Taxol. These results indicate that PS externalization is mediated by Ca flux, and PS shedding by both Ca flux and MT assembly. The cholesterol/phospholipid ratio in the membrane is modified by PS shedding; we now show that it was increased by colchicine and A23187, while taxol had no effect. In summary, the results indicate that the Ca flux and MT depolymerization of erythroid precursors mediate their PS externalization and shedding, which in turn changes their membrane composition.  相似文献   

17.
This article represents an updated review of ciliate metallothioneins (Tetrahymena species) including a comparative analysis with regard to well-known metallothioneins (MTs) from other organisms and discussion of their exclusive features. It opens with an introduction to ciliates, summarizing the main characteristics of these eukaryotic microorganisms and their use as cellular models to study metallothioneins and metal–eukaryotic cell interactions. It has been experimentally proved that at least three different metal resistance mechanisms exist in ciliates, of which bioaccumulation is the most studied. Structural comparative analysis reveals that Tetrahymena MTs have unique characteristics, such as longer length, a considerably higher cysteine content, different metal–MT stoichiometry values, the presence of new cysteine clusters, and a strictly conserved modular–submodular structure. Gene expression analysis reveals a multistress and differential response to diverse metals and other environmental stressors, which corroborates the classification of these MTs. An in silico analysis of the promoter sequences of some MT genes reveals the presence of conserved motifs that are probably involved in gene expression regulation. We also discuss the great advantages of the first ciliate whole-cell biosensors based on MT promoters from Tetrahymena thermophila to detect heavy metal ions in environmental samples.  相似文献   

18.
The dynamics of microtubule (MT) disassembly and reassembly were studied in the green alga Ernodesmis verticillata, using indirect immunofluorescent localization of tubulin. This alga possesses two distinct MT arrays: highly-ordered, longitudinally-oriented cortical MTs, and shorter perinuclear MTs radiating from nuclear surfaces. Perinuclear MTs are very labile, completely disassembling in the cold (cells on ice) within 5–10 min or in 25 μM amiprophos-methyl (APM) within 15–30 min. Although cortical MTs are generally absent after 3 h in APM, it takes 45–60 min before any cold-induced depolymerization is apparent, and some cortical MTs persist after 6 h of cold treatment. The extent of immunofluorescence of cytoplasmic (depolymerized?) tubulin is inversely proportional to the abundance of cortical MTs. Recovery of MT arrays upon warming or upon removal of APM occurs within 30–60 min for the perinuclear MTs, but the cortical arrays take much longer to regain their normal patterns. The cortical MTs initially reappear in a random distribution with respect to the cell axis, but within 3–4 d of warming (or 24–36 h of removing APM) they are nearly parallel to each other and to the cell's longitudinal axis. Thus, although the timing differs, the actual patterns of depolymerization and recovery are similar, irrespective of whether physical or chemical agents are used. Longer-term treatments in 1 μM APM indicate that despite the rapid disappearance of perinuclear MTs, a loss of the uniform nuclear spacing occurs gradually over 1–6 d. Similar disorganization of nuclei is obtained with long-term treatment with 1 μM taxol, where a gradual loss of perinuclear MTs is accompanied by an increased abundance of mitotic spindles. This implies that perinuclear MTs can disassemble in vivo in the presence of taxol, and that they are not the sole components involved in maintaining nuclear spacing in these coenocytes. The results indicate that both nuclear and cortical sites of MT nucleation may exist in this organism, and that MT reassembly and re-organization are temporally distinct events in cells that have highly-ordered arrays of long MTs.  相似文献   

19.
S. Mizuta  T. Tsuji  S. Tsurumi 《Protoplasma》1995,189(1-2):123-131
Summary The effects of 2,6-dichlorobenzonitrile (DCB, an agent which inhibits cellulose synthesis) and cycloheximide (CHI, a known inhibitor of protein synthesis) on the construction and stability of the cortical microtubule (MT) cytoskeleton in two kinds of protoplasts (smaller protoplasts and larger ones) prepared fromBoodlea coacta (Dickie) Murray et De Toni were examined by immunofluorescence microscopy. In smaller protoplasts which develop from released protoplasmic masses in culture media, parental cortical MTs assume a convoluted configuration, but new cortical MTs appear following disassembly of convoluted MTs. New cortical MTs initially have a random arrangement but later, a rough meridional arrangement following development of cell polarity and finally, a high density meridional arrangement. In larger protoplasts which are formed within cell wall cylinders of thalli cut at 500 m length, longitudinally oriented parental cortical MTs are preserved. Each exhibits a curving configuration just after protoplast formation, but a straight configuration after 3 h of culture. In smaller protoplasts, cortical MT orientation changes from random to rough meridional orientation but never to a high density meridional orientation following treatment with 10 M CHI, and MT density decreases after 12 h. However, rough meridional and high density meridional arrangements of MTs ceased to be formed and MT density decreased following treatment with 10 M DCB. In larger protoplasts, high density meridional arrangements of MTs were noted not to be affected by treatment with CHI; instead, they continued to remain oriented meridionally, but the length and density were decreased after treatment with DCB for 3–4 h. After 10 h, the MTs became fragmented and orientation was random. From these findings it is summarized that: (1) There are no putative anchors in the plasma membrane of nascent smaller protoplasts, but the meridional orientation of cortical MTs requires anchors which may be distributed in the plasma membrane following the establishment of cell polarity. (2) Plasma membranes in larger protoplasts contain parental anchors oriented meridionally. Anchors stabilize cortical MTs via their close relation to cell walls (especially to cellulose). Anchors are detached from the plasma membrane when cellulose is not formed. (3) Cellulose regeneration may be indispensable to the formation and stabilization of the MT cytoskeleton inBoodlea.Abbreviations CHI cycloheximide - DCB 2,6-dichlorobenzonitrile - DMSO dimethylsulfoxide - MT microtubule  相似文献   

20.
S. Hasezawa  H. Nozaki 《Protoplasma》1999,209(3-4):98-104
Summary Cortical microtubules (MTs) have been implicated in the morphogenesis of plant cells by regulating the orientation of newly deposited cellulose microfibrils (CMFs). However, the role of MTs in oriented CMF deposition is still unclear. We have investigated the mechanism of CMF deposition with cultured tobacco protoplasts derived from taxol-treated BY-2 cells (taxol protoplasts). The BY-2 protoplasts regenerated patches of β-l,3-glucan (callose) and fibrils of β-l,4-glucan (cellulose). Taxol protoplasts possessed the same ordered MT arrays as material cells and regenerated CMFs with patterns almost coincidental with MTs. Electron microscopy revealed that, on the surface of cultured taxol protoplasts, each CMF bundle appeared to be deposited on each cortical MT. These results suggest that MTs may attach directly to the cellulose-synthesizing complexes, by some form of linkage, and regulate the movement of these complexes in higher-plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号