首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Epidermal growth factor (EGF) stimulated the formation of inositol trisphosphate, inositol bisphosphate, and inositol phosphate in density-arrested BALB/c/3T3 cells pretreated for 1.5-4 h with cholera toxin, a potent activator of adenyl cyclase, and isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor. Concomitant addition of cholera toxin, IBMX, and EGF to cells did not increase inositol phosphate levels, and pretreatment with both agents was more effective than pretreatment with either alone. Pre-exposure of cells to cholera toxin and IBMX also enhanced the increase in inositol phosphates occurring in response to platelet-derived growth factor (PDGF). Preincubation of cells with cholera toxin and IBMX in the presence of cycloheximide abolished the effects of these agents on EGF- and PDGF-stimulated inositol phosphate production as well as the lesser increase in inositol phosphate formation produced by cholera toxin and IBMX in the absence of hormone. Preincubation of cells with cycloheximide did not affect EGF binding or the ability of PDGF to stimulate inositol phosphate formation. Cycloheximide also precluded EGF-induced inositol phosphate production when presented to cells 3 h after addition of cholera toxin and IBMX. These findings show that, under the appropriate conditions, EGF is capable of stimulating inositol phosphate formation in a nontransformed cell line.  相似文献   

2.
Insulin-stimulated phosphoinositide metabolism in isolated fat cells   总被引:6,自引:0,他引:6  
Treatment of isolated fat cells with insulin produced increases of up to 4.8-fold in the incorporation of [3H]inositol into phosphatidylinositol. This effect of insulin was both time- and dose-dependent with half-maximal stimulation at 30 microunits/ml of insulin. Insulin increased the labeling of phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate but not phosphatidylinositol 4-monophosphate in cells which had been preincubated with [3H]inositol for 90 min. Incubation of the cells in a Ca2+-free buffer increased the basal level of phosphatidylinositol labeling and enhanced the effect of insulin. Glucagon and isoprenaline, both of which stimulate lipolysis, had no effect on phosphatidylinositol labeling but did potentiate insulin-stimulated incorporation of [3H]inositol into phosphatidylinositol. Phosphoinositide breakdown was measured by the accumulation of inositol phosphates. Insulin did not increase the level of the inositol phosphates at all concentrations of the hormone tested. By comparison, phenylephrine and vasopressin were able to stimulate phosphoinositide breakdown. Pretreatment of the cells with insulin enhanced the effect of phenylephrine on inositol phosphates' accumulation, suggesting that insulin may potentiate phenylephrine-mediated phosphoinositide turnover. From these data we conclude that insulin stimulates the de novo synthesis of phosphatidylinositol and phosphatidylinositol 4,5-biphosphate, but has no effect on phosphoinositide breakdown.  相似文献   

3.
The effects of carbachol on polyphosphoinositides and 1,2-diacylglycerol metabolism were investigated in bovine tracheal smooth muscle by measuring both lipid mass and the turnover of [3H]inositol-labeled phosphoinositides. Carbachol induces a rapid reduction in the mass of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate and a rapid increase in the mass of 1,2-diacylglycerol and phosphatidic acid. These changes in lipid mass are sustained for at least 60 min. The level of phosphatidylinositol shows a delayed and progressive decrease during a 60-min period of carbachol stimulation. The addition of atropine reverses these responses completely. Carbachol stimulates a rapid loss in [3H]inositol radioactivity from phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate associated with production of [3H]inositol trisphosphate. The carbachol-induced change in the mass of phosphoinositides and phosphatidic acid is not affected by removal of extracellular Ca2+ and does not appear to be secondary to an increase in intracellular Ca2+. These results indicate that carbachol causes phospholipase C-mediated polyphosphoinositide breakdown, resulting in the production of inositol trisphosphate and a sustained increase in the actual content of 1,2-diacylglycerol. These results strongly suggest that carbachol-induced contraction is mediated by the hydrolysis of polyphosphoinositides with the resulting generation of two messengers: inositol 1,4,5-trisphosphate and 1,2-diacylglycerol.  相似文献   

4.
Epidermal growth factor (EGF) stimulates the turnover of phosphoinositides in A431 cells. In cells that were pretreated with EGF for 30 min at 37 degrees C and then washed to remove surface-bound hormone, a 70-100% decrease in the EGF-stimulated production of inositol monophosphate, inositol bisphosphate, and inositol triphosphate was noted when the cells were exposed to the agonist a second time. Since only a 15% decrease in receptor number was observed in these pretreated cells, the loss of responsiveness to EGF for the production of inositol phosphates could not be attributed to a down-regulation of the EGF receptors. These data suggest that pretreatment of A431 cells with high concentrations of EGF leads to a desensitization of the EGF receptor. This desensitization of the receptor by EGF is apparent within 10-15 min of the addition of EGF and is maximal by 30 min. The desensitization appears to be homologous in nature since pretreatment of cells with EGF did not diminish their responsiveness to bradykinin; and conversely, pretreatment with bradykinin did not diminish the subsequent responsiveness of the cells to EGF. Desensitization to EGF was observed in cells in which protein kinase C had been down-regulated by prolonged treatment with 12-O-tetradecanoylphorbol-13-acetate, implying that EGF receptor desensitization is independent of protein kinase C. The desensitizing effects of EGF on growth factor-induced phosphatidylinositol turnover could be prevented by pretreatment of the cells with the calmodulin antagonist trifluoperazine, suggesting that calmodulin may be involved in the regulation of EGF receptor sensitivity.  相似文献   

5.
Stimulation of rat Kupffer cells in primary culture with platelet-activating factor (PAF) caused a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate with a concomitant increase in the levels of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,4-bisphosphate. This phospholipase C-mediated hydrolysis of polyphosphoinositides was independent of extracellular Ca2+ but was inhibited by the intracellular Ca2+ antagonist TMB-8. A second slower response to PAF was characterized by deacylation of PI leading to the accumulation of glycerophosphoinositol (GPI). PAF-induced GPI synthesis was not inhibited by TMB-8. These effects of PAF were accompanied by initial transient mobilization of Ca2+ from intracellular stores followed by a rather slow influx of Ca2+ from the extracellular medium. PAF-stimulated deacylation and phosphodiesteric hydrolysis of inositol lipids were differentially affected by cholera toxin and pertussis toxin. Pretreatment of the Kupffer cells with either of these toxins caused inhibition of phospholipase C activity. Pertussis toxin also inhibited PAF-stimulated deacylation. However, cholera toxin itself stimulated GPI release and addition of PAF to the cholera toxin-treated cells caused a further increase in GPI release. Phorbol ester inhibited PAF-induced phosphodiesteric hydrolysis of phosphoinositides, but not deacylation. PAF-induced metabolism of phosphoinositides was inhibited by the PAF antagonist, U66985. These results suggest that PAF-induced phosphodiesteric hydrolysis and deacylation of inositol phospholipids are regulated via distinct mechanisms involving activation of separate G-proteins in rat Kupffer cells. Also the regulation of phosphoinositide metabolism by Ca2+ mobilization from two separate Ca2+ pools is indicated by this study.  相似文献   

6.
Thyrotropin-releasing hormone (TRH), like numerous other Ca2+-mobilizing agonists, has been found to stimulate polyphosphoinositide hydrolysis in responsive cells. The present studies further clarify the mechanism of action of this peptide hormone by demonstrating direct in vitro effects of TRH on polyphosphoinositide hydrolysis in GH3 pituitary cell membranes. Membranes from [3H]myoinositol-labeled cells were found to generate inositol bis- and tris- but not monophosphate upon incubation. Inositol polyphosphate generation was stimulated 2-3-fold by nanomolar concentrations of TRH in a reaction which was potentiated by micromolar concentrations of GTP; hormone-stimulated hydrolysis observed in the absence of GTP was fully antagonized by guanosine 5'-O-(2-thiodiphosphate). Guanosine 5'-O-(3-thiotriphosphate), Ca2+, and sodium fluoride also activated phosphoinositide hydrolysis in vitro. Stimulated inositol polyphosphate generation was accompanied by stimulated 1,2-diacylglycerol formation. Evidence that both phosphatidylinositol 4,5-bisphosphate as well as phosphatidylinositol 4-phosphate served as substrates for the activated phosphoinositide phosphodiesterase is presented. Pretreatment of GH3 cells with cholera or pertussis toxin did not influence stimulated hydrolysis in membranes. It is concluded that the TRH receptor directly regulates polyphosphoinositide hydrolysis in GH3 cell plasma membranes by a GTP-dependent process. The GTP dependence does not appear to be mediated through a cholera or pertussis toxin substrate and may involve a novel GTP-binding protein (NP).  相似文献   

7.
Decapitation-induced changes in inositol phosphates in rat brain   总被引:3,自引:0,他引:3  
Decapitation resulted in a time-dependent production of inositol phosphates in rat brain. This production was analyzed by measuring both the radioactivity and the concentrations of inositol phosphates generated from [3H]inositol-labeled phospholipids. Both measurements produced the same time-dependent changes, including a rapid decrease in inositol 1,4,5-trisphosphate within 1.5 min, a 6-fold increase in inositol 1,4-bisphosphate to a maximum at 1.5 min, a 5-fold rise in inositol 4-monophosphate to a maximum at 2.5 min, and little change in inositol 1-monophosphate. The temporal changes in the mass and radioactivity of these compounds, together with the decrease in labeling of phosphatidylinositol 4,5-bisphosphates, support the idea that the inositol phosphates originate from the hydrolysis of phosphatidylinositol 4,5-bisphosphates and not from either the direct hydrolysis of phosphatidylinositol 4-phosphates or phosphatidylinositols.  相似文献   

8.
Addition of vasopressin (100 nM) to rat hepatocytes prelabelled with [3H]inositol stimulated the production of inositol phosphates in the presence of 20 mM Li+. Preincubation of hepatocytes with insulin (50 nM) or glucagon (10 nM) had no significant effect alone but enhanced the effects of vasopressin after a lag period of at least 1 min. The effects of insulin and glucagon appeared additive in this respect. Insulin also enhanced the norepinephrine-mediated stimulation of inositol phosphate accumulation. The enhancement by insulin of the effects of vasopressin required at least 0.5-5 nM insulin and did not involve changes in [3H]inositol lipid labelling or IP3 phosphatase activity. The effect of insulin appeared insensitive to prior treatment of hepatocytes with pertussis toxin (200 ng/ml for 18-24 h) or cholera toxin (100 ng/ml for 3-4 h). The glucagon enhancement of the effects of vasopressin was not affected by pertussis toxin but was mimicked by cholera toxin. The response of hepatocytes to vasopressin in the absence of Li+ was smaller and more transient. Under these conditions a 5 min prior incubation with insulin inhibited the stimulation by vasopressin of inositol phosphate accumulation. A similar inhibitory effect of prior insulin exposure on the transient activation by vasopressin of exogenous phosphatidylinositol 4,5-bisphosphate breakdown by hepatocyte homogenates was also seen. These data indicate that insulin, although having no effect on basal inositol phosphate accumulation, can either enhance or antagonise the effects of vasopressin in primary rat liver hepatocyte cultures depending on the experimental conditions.  相似文献   

9.
The kinetics of [3H]inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of [3H]inositol monophosphates and [3H]inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the [3H]inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of [3H]inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of [3H]inositol phosphates. The sum of the rates of accumulation of D-myo-inositol 1-monophosphate and D-myo-inositol 4-monophosphate did not exceed the rate of breakdown of D-myo-inositol 1,4,5-trisphosphate or the sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate. These kinetic analyses suggest that agonist-stimulated [3H]inositol bis- and monophosphate formation in intact rat parotid acinar cells can be accounted for by the metabolism of D-myo-[3H]inositol 1,4,5-trisphosphate rather than by phospholipase C-catalyzed hydrolysis of phosphatidylinositol or phosphatidylinositol 4-phosphate.  相似文献   

10.
The hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) stimulates luteinizing hormone secretion via receptor-mediated activation of phosphoinositide hydrolysis to yield inositol phosphates and diacylglycerol. Application of anion-exchange high-performance liquid chromatography together with absorbance and radiochemical flow detection has enabled both the characterization and quantitative estimation of pituitary cell inositol phosphates and phosphoinositides. In cultured pituitary cells, GnRH caused a rapid and progressive rise in the formation of inositol 1,4,5-trisphosphate and of higher polyphosphoinositols corresponding to inositol tetrakisphosphate, pentakisphosphate, and hexakisphosphate. The inositol 1,4,5-trisphosphate formed during GnRH action was dephosphorylated predominantly via inositol 4-monophosphate rather than the expected metabolite, inositol 1-monophosphate. The catabolism of inositol 4-monophosphate, like that of inositol 1-monophosphate, was inhibited by lithium. For these reasons and because it was the major metabolite of [3H] inositol 1,4,5-trisphosphate in permeabilized gonadotrophs, inositol 4-monophosphate appears to represent a specific marker for ligand-stimulated inositol polyphosphate formation and metabolism. The marked and sustained elevations of inositol 4-monophosphate and inositol 1,4-bisphosphate in GnRH-stimulated gonadotrophs indicate that polyphosphoinositides rather than phosphatidylinositol are the preferred substrates of phospholipase C during GnRH action.  相似文献   

11.
XB, a cell line derived from a mouse teratoma, differentiates into stratified squamous epithelium when incubated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To examine the possible biochemical mediators of this response, we compared the effects produced by TCDD to those elicited by other compounds which stimulate epidermal proliferation and/or differentiation in mice. XB/3T3 cultures keratinize when incubated with cholera toxin, epidermal growth factor (EGF), or TCDD, but not 12-0-tetradecanoylphorbol-13-acetate (TPA). Incubation of XB cells with TCDD (10(-9)M) for 48 hours produces a 20% increase in thymidine incorporation, a response which is neither as large nor as rapid as that produced by cholera toxin, TPA, or EGF. Although both cholera toxin and TCDD stimulate differentiation and thymidine incorporation in XB/3T3 cultures, cholera toxin increases cAMP 30-fold in these cells, while TCDD does not affect cAMP accumulation at any of the times studies (15 min to 120 hours). Inhibitors of arachidonic acid metabolism, which block epidermal proliferative responses to TPA in vivo, do not prevent the differentiation of XB cells in response to TCDD. In XB/3T3 cultures, TPA stimulates arachidonic acid release at all times tested (1,6, and 24 hours) and increases the incorporation of 32Pi into total phospholipids and phosphatidylcholine after 3 hours. In contrast, TCDD affects neither arachidonic acid release nor the turnover of phosphatidylinositol or phosphatidylcholine at any of the times tested. Although we examined biochemical effects which have been suggested as part of the mechanism of TCDD and which are produced by other epidermal proliferative compounds in XB cells, no mediator of the TCDD-produced differentiation of XB/3T3 cultures was observed.  相似文献   

12.
Cholera toxin pretreatment has been found to cause a 3-fold increase in the initial rate of antigen-stimulated secretion of serotonin from rat basophilic leukemia (RBL) cells. Under similar conditions, cholera toxin enhances the antigen-stimulated rise in cytoplasmic free ionized calcium levels and causes a 2-3-fold increase in the rate of antigen-stimulated influx of 45Ca. In intact RBL cells cholera toxin pretreatment potentiates the antigen-stimulated production of inositol phosphates, but in permeabilized cells, with strongly buffered free calcium levels, no effect of cholera toxin pretreatment on the antigen-stimulated activation of cellular phospholipase activities is observed. In addition, pretreatment of cells with tetradecanoylphorbol acetate inhibits antigen-stimulated production of inositol phosphates by greater than 95%, while the stimulated influx of 45Ca remains unaffected. These data indicate that the antigen-stimulated influx of calcium into RBL cells can be dissociated from the production of inositol phosphates in these cells. The observed effects of cholera toxin on exocytosis and Ca2+ influx in RBL cells are not due to the elevation of cellular cyclic AMP levels since a variety of agents capable of elevating cellular cyclic AMP levels do not mimic these effects. Together, these data suggest that a cholera toxin-sensitive guanine nucleotide-binding protein is involved in the pathway responsible for the antigen-stimulated influx of calcium into RBL cells.  相似文献   

13.
Activation of T cells by lectins or mAb directed at components of the Ag-specific TCR results in hydrolysis of phosphorylated derivatives of phosphatidylinositol and an increase in intracellular free calcium concentration (Cai). We report that cholera toxin, which activates adenylate cyclase by ADP ribosylation of a G protein, also reduces both inositol phosphate (IP) production and the rise in Cai in Con A-stimulated murine T cells. We find that similar dose-dependent inhibitory effects can be induced by each of four other agents that raise cAMP levels in such cells: forskolin, PGE2, 2-chloroadenosine, and isoproterenol. The effects of these agents on IP production are reversible and therefore do not simply reflect cytotoxicity. Activation by PHA and by antibody to the T3-epsilon-chain of the TCR complex are also inhibited by agents that increase intracellular cAMP. Thus, changes in cAMP concentration seem to regulate both IP production and the Ca2+ response, two early components of the mitogen-induced activation process.  相似文献   

14.
S T Sawyer  S Cohen 《Biochemistry》1981,20(21):6280-6286
Epidermal growth factor (EGF) stimulates the incorporation of 32Pi and [3H]inositol into phosphatidylinositol (5-10-fold) in A-431 cells. EGF also stimulates the incorporation of 32Pi into phosphatidic acid (up to 10-fold). These effects are attributed to an acceleration of the turnover of phosphatidylinositol as a consequence of the binding of EGF to its membrane receptor. The extent of the phosphatidylinositol response to EGF parallels the extent of hormone binding. The phosphatidylinositol response to EGF appears to be dependent on an influx of calcium since (a) external calcium is required for the enhancement of phosphatidylinositol turnover, (2) the accumulation of 45Ca by A-431 cells is stimulated by EGF, (3) blockage of calcium influx with LaCl3 inhibits stimulation of phosphatidylinositol turnover, and (4) calcium influx via ionophore A23187 is sufficient to stimulate phosphatidylinositol turnover. Since the binding, internalization, and degradation of 125I-labeled EGF in A-431 cells are unaffected by the omission of calcium from the medium, external calcium and phosphatidylinositol turnover are not necessary for the internalization and degradation of the EGF-receptor complex.  相似文献   

15.
Cross-linking of membrane immunoglobulin, the B cell receptor for antigen, activates the phosphoinositide signal transduction pathway. The initial event in this pathway is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) by phospholipase C. This reaction yields two intracellular second messengers, diacylglycerol, which activates protein kinase C, and inositol trisphosphate, which causes an increase in cytoplasmic Ca2+. The experiments reported here demonstrate that activation of phospholipase C by membrane IgM (mIgM) involves a guanine nucleotide-dependent step. Saponin was used to permeabilize WEHI-231 B lymphoma cells and permit direct manipulation of nucleotide and Ca2+ concentrations. Very high levels of Ca2+ (greater than 100 microM) activated the phospholipase maximally without a requirement for cross-linking of mIgM. However, at much lower, physiologically relevant Ca2+ concentrations (100 to 500 nM), receptor-stimulated PtdInsP2 hydrolysis could be demonstrated. The ability of anti-IgM antibodies to activate phospholipase C in permeabilized WEHI-231 cells was greatly increased by nonhydrolyzable guanosine 5'-triphosphate (GTP) analogues (guanosine-5'-O-(3-thiotriphosphate) or 5'-guanylylimidodiphosphate), but not by guanosine diphosphate or guanosine diphosphate analogues or by a nonhydrolyzable analogue of adenosine triphosphate. This specificity for GTP analogues is consistent with the hypothesis that a GTP-binding regulatory protein analogous to those that couple receptors to adenylate cyclase is involved in the activation of phospholipase C by mIgM in WEHI-231 B lymphoma cells. In order to characterize this putative GTP-binding component, we examined the ability of pertussis toxin and cholera toxin to affect anti-IgM-stimulated inositol phosphate production. These bacterial toxins covalently modify and modulate the activity of various GTP-binding regulatory proteins and in some cell types can block receptor-stimulated PtdInsP2 breakdown. In WEHI-231 B lymphoma cells, neither toxin blocked signaling by mIgM. Thus mIgM appears to be coupled to the phosphoinositide signaling pathway by a GTP-dependent component that is insensitive to both pertussis toxin and cholera toxin.  相似文献   

16.
The effect of decreasing the concentration of receptors for thyrotropin-releasing hormone (TRH) on the surface of cloned rat pituitary (GH3) cells on TRH-stimulated inositol trisphosphate (Ins-P3) formation was investigated. Incubation of cells with dibutyryl cAMP (Bt2cAMP) for 16 h caused a decrease in [3H] TRH binding to intact cells to a minimum level 37 +/- 9.1% of control. Scatchard analysis of the concentration dependency of [3H]TRH binding showed that the effect of Bt2cAMP was to lower the receptor concentration without affecting its affinity for TRH. Similar decreases in [3H]TRH binding were found in cells incubated with 8-bromo-cAMP, cholera toxin, and sodium butyrate and, as shown previously, with TRH. In cells incubated with 1 mM Bt2cAMP for 16 h, but not for 1 h, the maximum TRH-induced increase in Ins-P3 was inhibited to 25 +/- 3.2% of that in control cells. Inhibition of TRH-induced Ins-P3 formation was also observed in cells treated with 8-bromo-cAMP, cholera toxin, and sodium butyrate for 16 h, and with TRH for 48 h. Inhibition of TRH-induced Ins-P3 formation and lowering of TRH receptor concentration caused by Bt2cAMP occurred in parallel with increasing doses of Bt2cAMP; at 16 h of exposure, half-maximal effects occurred with 0.3 mM Bt2cAMP. The concentration dependency of TRH-induced Ins-P3 formation was the same in control and Bt2cAMP-treated cells; half-maximal effects occurred with 10 nM TRH. These data demonstrate that decreases in TRH receptor concentration caused by several agents that act via different mechanisms are associated with reduced stimulation of Ins-P3 formation and suggest that the TRH receptor is tightly coupled to stimulation of hydrolysis of phosphatidylinositol 4,5-bisphosphate by a phospholipase C.  相似文献   

17.
The initial signal for thyroid cell proliferation is unknown. This is the first report to show that epidermal growth factor (EGF) produces inositol phosphates and increases cytoplasmic free calcium ([Ca2+]i) in the thyroid gland. In cultured porcine thyroid cells, 10 nM EGF produces a breakdown of phosphatidylinositol and stimulates inositol phosphate production. Ten nM EGF increases [Ca2+]i, measured using fura-2, a fluorescent Ca2+ indicator; the EGF-induced [Ca2+]i response occurs immediately, reaches a maximum within several seconds, and then slowly declines. EGF stimulates production of inositol phosphates, which seem to increase [Ca2+]i. Inositol phosphate production and an increase in [Ca2+]i after EGF-stimulation may function as an initial signal for thyroid cell proliferation.  相似文献   

18.
Addition of vasopressin to rat hepatocytes prelabeled with myo-[2-3H]inositol resulted in a very rapid decrease [3H]phosphatidylinositol 4,5-bisphosphate (Ptd-Ins-4,5-P2) which was paralleled by increases of up to 3-fold in the levels of [3H]inositol trisphosphate (Ins-P3) and [3H]inositol bisphosphate (Ins-P2). Increases of [3H]inositol phosphate (Ins-P) were not detected until about 5 min after hormone addition. These data indicate that the major pathway for hormone-induced lipid breakdown in liver is through a phosphodiesterase for PtdIns-4,5-P2 and that decreases of phosphatidylinositol are a secondary result of increased PtdIns-4,5-P2 resynthesis. Using the fluorescent Ca2+ indicator Quin 2, cytosolic free Ca2+ increased from 160 nM to about 400 nM after vasopressin addition to hepatocytes and preceded the conversion of phosphorylase b to a. Half-maximal and maximal increases of cytosolic free Ca2+ and phosphorylase a activity were observed at 0.2 and 1 nM vasopressin, respectively. The dose-response curve for the initial rate of cytosolic free Ca2+ increase was very similar to those obtained for the initial rates of Ins-P3 production and PtdIns-4,5-P2 breakdown. Pretreatment of hepatocytes with Li+ caused a 3--4-fold potentiation of vasopressin-induced elevations of Ins-P, Ins-P2, and Ins-P3, with half-maximal effects at 0.5, 1, and 5 mM, respectively. The calculated maximal concentrations of Ins-P3 in cells treated with 20 nM vasopressin were 10 and 30 microM, respectively, without and with Li+. Lithium did not affect the initial rate of inositol polyphosphate production or Ca2+ mobilization. The increase of Ins-P3 which correlated with peak cytosolic free Ca2+ elevation was about 0.6 microM. In a saponin-permeabilized hepatocyte preparation, Ins-P3 (1 microM) caused Ca2+ release from a vesicular, ATP-dependent Ca2+ pool. The data presented here suggest that Ins-P3 may be a second messenger for the mobilization of intracellular Ca2+ by hormones in liver.  相似文献   

19.
Rat pancreatic fragments and acinar preparations were incubated in vitro to characterize further the changes in phosphoinositide metabolism that occur during secretagogue action. Two distinct responses were discernible. The first response, most notably involving a decrease in phosphatidylinositol content, was (a) observed at lower carbachol concentrations in dose-response studies, (b) inhibited by incubation in Ca2+-free media containing 1 mM EGTA, (c) associated with increases in inositol monophosphate production, and (d) provoked by all tissue secretagogues (carbachol, cholecystokinin, secretin, insulin, dibutyryl cAMP and the ionophore A23187), regardless of whether their mechanism of action primarily involved Ca2+ mobilization or cAMP generation. This decrease in phosphatidylinositol content was at least partly due to phospholipase C (and/or D) activation, as evidenced by the increase in inositol monophosphate. The second response, most notably involving markedly increased incorporation of 32PO4 into phosphatidic acid and phosphatidylinositol, was (a) observed at higher carbachol concentrations, (b) not influenced by incubation in Ca2+-free media containing 1 mM EGTA, and (c) associated with increases in inositol triphosphate production. This 32PO4 turnover response was probably largely the result of phospholipase C-mediated hydrolysis of phosphatidylinositol 4′,5′-diphosphate, which, as shown previously, also occurs at higher carbachol concentrations and is insensitive to comparable EGTA-induced Ca2+ deficiency. This phosphatidylinositol 4′,5′-diphosphate hydrolysis response was only observed in the action of agents (carbachol and cholecystokinin) which mobilize Ca2+ via activation of cell surface receptors. The present results indicate that phosphatidylinositol and phosphatidylinositol 4′,5′-diphosphate hydrolysis are truly separable responses to secretagogues acting in the rat pancreas. Furthermore, phosphatidylinositol 4′,5′-diphosphate, rather than phosphatidylinositol hydrolysis is more likely to be associated with receptor activation and Ca2+ mobilization.  相似文献   

20.
Activation of the phosphatidylinositol cycle in spreading cells   总被引:4,自引:0,他引:4  
Metabolites of the phosphatidylinositol cycle were analyzed in BHK-21 (C13) cells spreading on fibronectin-coated culture plates in comparison with attached nonspreading cells 45 min after plating. Among the water-soluble metabolites (glycerophosphoinositol, inositol, inositol monophosphate, inositol bisphosphate, inositol trisphosphate, and inositol tetrakisphosphate), significant elevations were found for inositol monophosphate, inositol bisphosphate, and inositol tetrakisphosphate. In the lipid fraction, phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate were significantly elevated. The activation of the phosphatidylinositol cycle in spreading versus nonspreading attached BHK-21 (C13) cells may be involved in the permissive effect of the extracellular matrix on cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号