首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives:  This study aims to establish three-dimensional (3D) cell culture models of human ovarian and endometrial cancers and to compare biological and morphological characteristics of these models with those of two-dimensional (2D) models of the same cell lines and the primary tumours.
Methods:  3D models of ovarian and endometrial cancer cell cultures were established using a Rotary Cell Culture System. Immunohistochemical profiling and differential proteomics were used to characterize biological characteristics of multicellular spheroids (MCS) formed from these cultures. These were compared to characteristics of the same cells established in 2D and of the primary tumours from which the cell lines were derived.
Results:  MCSs from 3D cell cultures appeared histologically similar to the primary tumours. Immunohistochemical profiling of multiple markers, including CA125, BCL2 and p53, showed that patterns of protein expression in MCSs resemble those of the primary tumours. Proteomic profiling identified several differentially expressed protein markers between 2D and 3D cultures. These included prohibitin, which was down-regulated in 3D cultures suggesting cells proliferate less compared to 2D cultures; and VDAC1 and annexin 4, which were up-regulated in 3D cultures suggesting greater levels of apoptosis in 3D compared to 2D models.
Conclusion:  Establishing 3D models of cancer cell lines is likely to be of value for studying the molecular and biological mechanisms of ovarian/endometrial tumour progression and for testing novel molecular targets for cancer therapy.  相似文献   

2.
Objectives:  Neovascularization represents a major challenge in tissue engineering applications since implantation of voluminous grafts without sufficient vascularity results in hypoxic cell death of implanted cells. An attractive therapeutic approach to overcome this is based on co-implantation of endothelial cells to create vascular networks. We have investigated the potential of human endothelial progenitor cells (EPC) to form functional blood vessels in vivo in direct comparison to vascular-derived endothelial cells, represented by human umbilical vein endothelial cells (HUVEC).
Materials and methods:  EPCs were isolated from human peripheral blood, expanded in vitro and analysed in vitro for phenotypical and functional parameters. In vivo vasculogenic potential of EPCs and HUVECs was evaluated in a xenograft model where spheroidal endothelial aggregates were implanted subcutaneously into immunodeficient mice.
Results:  EPCs were indistinguishable from HUVECs in terms of expression of classical endothelial markers CD31, von Willebrand factor, VE-cadherin and vascular endothelial growth factor-R2, and in their ability to endocytose acetylated low-density lipoprotein. Moreover, EPCs and HUVECs displayed almost identical angiogenic potential in vitro , as assessed by in vitro Matrigel sprouting assay. However in vivo , a striking and unexpected difference between EPCs and HUVECs was detected. Whereas implanted HUVEC spheroids gave rise to formation of a stable network of perfused microvessels, implanted EPC spheroids showed significantly impaired ability to form vascular structures under identical experimental conditions.
Conclusion:  Our results indicate that vascular-derived endothelial cells, such as HUVECs are superior to EPCs in terms of promoting in vivo vascularization of engineered tissues.  相似文献   

3.
Background:  Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints.
Materials and methods:  Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated.
Results:  Rapid prototyping of 3DF architectures with 100% interconnecting pores promoted homogeneous distribution of viable cells, glycosaminoglycan (GAG) and collagen type II; significantly greater GAG content and differentiation capacity (GAG/DNA) in vitro compared to CM architectures; and higher mechanical equilibrium modulus and dynamic stiffness (at 0.1 Hz). Six weeks after implantation, femoral and tibial constructs had integrated with rabbit bone and knee flexion/extension and partial load bearing were regained. Histology demonstrated articulating surfaces between femoral and tibial constructs for CM and 3DF architectures; however, repair tissue appeared fibrocartilage-like and did not resemble implanted cartilage.
Conclusions:  Anatomically shaped, tissue-engineered constructs with designed mechanical properties and internal pore architectures may offer alternatives for reconstruction or restoration of congruent articulating surfaces in small joints.  相似文献   

4.
Abstract E-cadherin expression is unusually regulated in epithelial ovarian carcinoma. It is not expressed in poorly cohesive ovarian surface epithelial (OSE) target cells, but is expressed in cohesive pre-malignant lesions and in highly cohesive, well-differentiated tumors where it is membrane associated, presumably in adherens junctions. E-cadherin expression is subsequently suppressed, or its function is disrupted, in late-stage invasive tumors. Here, we observed that increased E-cadherin expression in ovarian carcinoma cells was associated with increased E-cadherin promoter activity, increased adherens junction formation, decreased β-catenin signaling-dependent LEF-1 activity, and the generation of cohesive spheroids in basement membrane gel culture. Forced expression of wild-type E-cadherin in immortalized OSE cells initiated adherens junction formation, decreased LEF-1 activity, decreased the mesenchymal migration that is a characteristic of OSE cells that have been maintained in monolayer culture, and induced the formation of cohesive spheroids in basement membrane gels. Conversely, forced expression of a dominant-negative E-cadherin mutant in ovarian carcinoma cells disrupted adherens junctions, increased mesenchymal cell migration, and prevented spheroidal morphogenesis without altering LEF-1 signaling. Therefore, in addition to suppressing late-stage tumor progression, E-cadherin-mediated adherens junctions may also contribute to the initial emergence of a cohesive morphogenic phenotype that is a hallmark of differentiated epithelial ovarian carcinoma.  相似文献   

5.
Human ovarian surface epithelium in primary culture   总被引:6,自引:0,他引:6  
The ovarian surface epithelium (OSE) represents a minute fraction of the cell mass of the ovary but gives rise to over 80% of human ovarian carcinomas. No experimental models for the study of human OSE exist. To characterize OSE cells in culture, explants of ovarian surface from normal ovary of premenopausal women were grown on plastic, glass, and collagen gel in 25% fetal bovine serum/Waymouth's medium 752/1. About 25% of explants produced epithelial outgrowths. Morphologically, these outgrowths resembled OSE in vivo and endothelial and mesothelial cells in culture, but they differed from cultured ovarian stromal, granulosa, and luteal cells. Only OSE among ovarian cell types were intensely keratin positive by immunofluorescence. Keratin also distinguished OSE cells from the keratin-negative endothelial cells. Most but not all OSE colonies tested showed 17 beta-hydroxysteroid dehydrogenase (HSD) activity, which was absent in peritoneal mesothelial cells. Colonies from most patients were limited to a few millimetres and became stationary within a few weeks. Changes that accompanied cessation of growth included senescence, increased keratin content, or the formation of multicellular papillary aggregates. With time, OSE cells tended to assume a fibroblast-like morphology but remained keratin positive and continued to resemble OSE by scanning electron microscopy (SEM). Subcultured OSE cells persisted in a stationary keratin-positive form for many weeks. Throughout this study, all pavementlike epithelial outgrowths that were contiguous with an explant stained for keratin; thus, such colonies can be assumed to be OSE. Conversely, fibroblast-shaped cells may represent OSE as indicated by keratin content and SEM appearance. The methods presented here permit culture of normal human OSE under conditions in which the cells exhibit morphologic plasticity, variable 17 beta-HSD activity, and presence of keratin.  相似文献   

6.
Summary The ovarian surface epithelium (OSE) represents a minute fraction of the cell mass of the ovary but gives rise to over 80% of human ovarian carcinomas. No experimental models for the study of human OSE exist. To characterize OSE cells in culture, explants of ovarian surface from normal ovary of premenopausal women were grown on plastic, glass, and collagen gel in 25% fetal bovine serum/Waymouth's medium 752/1. About 25% of explants produced epithelial outgrowths. Morphologically, these outgrowths resembled OSE in vivo and endothelial and mesothelial cells in culture, but they differed from cultured ovarian stromal, granulosa, and luteal cells. Only OSE among ovarian cell types were intensely keratin positive by immunofluorescence. Keratin also distinguished OSE cells from the keratin-negative endothelial cells. Most but not all OSE colonies tested showed 17β-hydroxysteroid dehydrogenase (HSD) activity, which was absent in peritoneal mesothelial cells. Colonies from most patients were limited to a few millimetres and became stationary within a few weeks. Changes that accompanied cessation of growth included senescence, increased keratin content, or the formation of multicellular papillary aggregates. With time, OSE cells tended to assume a fibroblast-like morphology but remained keratin positive and continued to resemble OSE by scanning electron microscopy (SEM). Subcultured OSE cells persisted in a stationary keratin-positive form for many weeks. Throughout this study, all pavementlike epithelial outgrowths that were contiguous with an explant stained for keratin; thus, such colonies can be assumed to be OSE. Conversely, fibroblast-shaped cells may represent OSE as indicated by keratin content and SEM appearance. The methods presented here permit culture of normal human OSE under conditions in which the cells exhibit morphologic plasticity, variable 17β-HSD activity, and presence of keratin. Supported by a grant and a research associateship to N. A. by the National Cancer Institute of Canada.  相似文献   

7.

Introduction

Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS).

Methods

CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat.

Results

Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches.

Conclusions

Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.  相似文献   

8.
Identification of cellular and morphological changes in myoblasts during three-dimensional (3D) culture may provide novel insight into skeletal muscle morphogenesis. One particular morphological change that occurs during the transition from monolayer culture to the 3D environment is the appearance of cytoplasmic projections (podia). The purpose of these studies was to determine if: (1) 3D culture increased podia formation in single cells, and (2) podia were F-actin dependent. C2C12 cells were grown in 3D conditions using a rotary cell culture system (RCCS) for 3, 6, and 9 h, fixed, and stained. Analysis of confocal images revealed that podia were significantly more numerous on RCCS cultured cells than those on suspension controls. Further, the podia of RCCS cultured cells decreased in number and increased in length during the time intervals examined. RCCS cultured cells showed no significant changes in viability, Annexin V staining, and activated Caspase 3 expression over time. In contrast, significant decreases in viability of suspension controls occurred. The application of 2 μM Latrunculin A (Lat A), an actin depolymerizing agent, significantly reduced the number of cells with podia. The number of cells with podia recovered with Lat A removal. Changes in viability and apoptosis markers were not significant during Lat A application or washout experiments. These observations reveal that: (1) culture conditions in the RCCS increase the quantity of podia formation; (2) these podia increase in length with time; and (3) F-actin plays a role in podia formation.  相似文献   

9.
Serial propagation of human ovarian surface epithelium in tissue culture   总被引:4,自引:0,他引:4  
Most human ovarian cancers are thought to arise in the ovarian surface epithelium (OSE). The precise role of OSE in carcinogenesis has not been defined because no appropriate animal models for the study of this tissue exist and culture of human OSE has been limited to primary outgrowths. In this report, we describe conditions for serial cultivation of normal human OSE. Premenopausal ovarian tissue was obtained at surgery. OSE growth was compared in media MCDB 202, 199 and Waymouth's 752/1 (WM) supplemented with 5, 15, or 25% fetal bovine serum (FBS), with/without 20 ng/ml epidermal growth factor (EGF) and 0.4 micrograms/ml hydrocortisone (HC). The rate and extent of OSE outgrowths from explants in primary culture were greatest in either WM or 199/202 (1:1), supplemented with 15% FBS/EGF/HC. In early passage cultures, cell proliferation was most rapid and extensive in 199/202 with 15% FBS, EGF, and HC. In this medium, OSE cells were subcultured up to 10 times and underwent 20-25 population doublings over 5 weeks. The population doubling time during rapid growth was approximately 48 h. Seeding efficiencies of up to 53% and cloning efficiencies of up to 13% were obtained. Early passage OSE cells reversibly modulated from a slow growing, epithelial, intensely keratin-positive form in 199/202 medium lacking EGF/HC, to a rapidly proliferating, elongate, less keratin-positive form in medium with EGF/HC. OSE cells grown in WM/5-15% FBS were epithelial and near-stationary. Thus, culture conditions have been defined for ovarian carcinogen assays requiring either proliferating or stationary cell populations, and for further studies of the role of OSE in ovarian biology.  相似文献   

10.
Estrogen stimulation of ovarian surface epithelial cell proliferation   总被引:6,自引:0,他引:6  
Summary Ovarian cancer is the leading cause of gynecological cancer mortality, and 85–90% of this malignancy originates from the ovarian surface epithelium (OSE). The etiology of ovarian epithelial cancer is unknown but a role for estrogens has been suspected. However, the effect of estrogens on OSE cell proliferation remains to be determined. Using the rabbit model, our studies have demonstrated that 17β-estradiol stimulates OSE cell proliferation and the formation of a papillary ovarian surface morphology similar to that seen in human ovarian serous neoplasms of low malignant potential. Immunohistochemical staining of ovarian tissue sections with an antibody to the estrogen receptor α demonstrates its expression in both OSE cells and stromal interstitial cells. In primary ovarian cell cultures, the proliferative response of the epithelial cells to 17β-estradiol depends on the expression of the estrogen receptor α in the epithelial cells. However, when the epithelial cells are grown together with ovarian stromal cells, their proliferative response to this hormone is greatly enhanced, suggesting the involvement of stromal-epithelial interactions. These studies suggest a role for estrogens and the estrogen receptor α in OSE growth.  相似文献   

11.
The three SLIT ligands and their four ROBO receptors have fundamental roles in mammalian development by promoting apoptosis and repulsing aberrant cell migration. SLITs and ROBOs have emerged as candidate tumour suppressor genes whose expression is inhibited in a variety of epithelial tumours. We demonstrated that their expression could be negatively regulated by cortisol in normal ovarian luteal cells. We hypothesised that after ovulation the locally produced cortisol would inhibit SLIT/ROBO expression in the ovarian surface epithelium (OSE) to facilitate its repair and that this regulatory pathway was still present, and could be manipulated, in ovarian epithelial cancer cells. Here we examined the expression and regulation of the SLIT/ROBO pathway in OSE, ovarian cancer epithelial cells and ovarian tumour cell lines. Basal SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4 expression was lower in primary cultures of ovarian cancer epithelial cells when compared to normal OSE (P<0.05) and in poorly differentiated SKOV-3 cells compared to the more differentiated PEO-14 cells (P<0.05). Cortisol reduced the expression of certain SLITs and ROBOs in normal OSE and PEO-14 cells (P<0.05). Furthermore blocking SLIT/ROBO activity reduced apoptosis in both PEO-14 and SKOV-3 tumour cells (P<0.05). Interestingly SLIT/ROBO expression could be increased by reducing the expression of the glucocorticoid receptor using siRNA (P<0.05). Overall our findings indicate that in the post-ovulatory phase one role of cortisol may be to temporarily inhibit SLIT/ROBO expression to facilitate regeneration of the OSE. Therefore this pathway may be a target to develop strategies to manipulate the SLIT/ROBO system in ovarian cancer.  相似文献   

12.
13.
Gulliver LS  Hurst PR 《Steroids》2012,77(6):674-685
BackgroundEstrogen replacement therapy increases risk for ovarian epithelial cancer, a cancer of mainly older women, yet the response of older ovarian surface epithelium (OSE) to repeat estrogen exposure overtime has not been studied. We have previously reported significant reductions in estrogen receptor (ER) protein expression, particularly the ERβ1 isoform, in older mouse OSE following a single depot estradiol injection. The current study examined OSE from older mice following a single, and repeat estradiol injection, given 14 days apart over 28 days.MethodsCohorts of mice were sacrificed 48 hours following each estradiol injection, and at three other equidistant time points. Serum and ovarian tissue estradiol concentration was correlated to immunohistochemical and morphometric parameters used to identify evidence of OSE hyperplasia and hypertrophy. Using immunohistochemistry, E-cadherin expression was investigated in OSE 48 hours following both estradiol injections, while ERα and ERβ1 expression was examined in OSE following repeat estradiol exposure only.ResultsFirst exposure to exogenous estradiol resulted in OSE hypertrophy and hyperplasia, and high levels of E-cadherin expression. In contrast, repeat estradiol exposure resulted in no OSE hyperplasia or hypertrophy, low levels of E-cadherin expression, high ERα and reduced ERβ1 protein expression in OSE, and low stromal ERα expression. Blood and ovarian tissue estradiol levels following repeat estradiol injection were half those recorded after a first dose equivalent injection, but remained significantly elevated above controls.ConclusionRepeat estradiol exposure leads to accumulation of estradiol in ovarian tissue, differentially regulating protein expression patterns for E-cadherin in OSE and ER in OSE and stroma.  相似文献   

14.
In this article we report on the culturing of dental enamel organ epithelia (EOE) using a rotary cell culture system (RCCS) bioreactor associated with a cytodex-3 microcarrier. This culture system enhanced the proliferation and differentiation of the EOE into ameloblasts. Primary dental EOE trypsinized from 4-day old post-natal rat pups were cultured in the RCCS associated with Cytodex-3. The results were analyzed in comparison to a conventional plate system (control). Cells grown in RCCS have shown higher viabilities (above 90%) and final cell densities in terms of cells/ml than in the control system. In the case of RCCS, 46 ± 2 manifold increases were obtained, while significantly lower yields of 10.8 ± 2.5 manifod were obtained for control plates. Throughout the experiments, glucose levels were maintained within the accepted physiological range. In this case, LDH levels are kept low (below 150 mmol/ml), which is in accordance with the low cell death observed in the RCCS. Scanning electron microscopy revealed cells that were spread and forming three dimensional aggregates on the surface of cytodex-3. Cells cultured in the RCCS exhibited a stronger positive immunofluorescence staining for ameloblastin than those in control plates. RT-PCR results revealed that cells cultured in RCCS have higher amelogenin mRNA levels compared to controls. We have done an exploratory study on biological characteristics and self-assembling of epithelium cellula intersitialis, which demonstrated that the special 3D environment enhanced the rat dental EOE cell proliferation and differentiation into ameloblasts. The study has revealed that RCCS could be used to study the reaction of the EOE cells, tooth enamel organ cells and mesenchymal cells under the spacial 3D culture system, which will also provide a novel hypothesis for dental regeneration.  相似文献   

15.
The normal ovarian surface epithelium (OSE) is a primitive epithelium made up by a single layer of mesothelial-type epithelial cells. When these cells get trapped in the ovarian stroma, expression of epithelial specific markers, such as E-cadherin, are induced. Most epithelial cells are also characterized by the ability to form tight junctions (TJ). Incomplete TJ have earlier been demonstrated in the OSE by electron microscopy studies. We have investigated expression and localization of the TJ proteins ZO-1, occludin, and claudin-1 in tissue biopsies from normal human ovaries and OSE in culture. The dynamics of TJ formation were studied in human OSE cultured on porous filters in culture inserts by measuring trans epithelial resistance (TER) including Ca(2+) switch experiments. Confluent OSE cells were also analyzed by electron microscopy. The results show that normal human OSE has expression of all three TJ proteins investigated. These proteins, ZO-1, occludin, and claudin-1, were localized to OSE cell borders both in ovarian biopsies and in cultured OSE. There was no difference in this regard between fertile and postmenopausal women. Cells in culture were polarized and presented junctional complexes seen by electron microscopy. In the Ca(2+) switch experiments, removing free Ca(2+) transiently, TER decreased significantly (P < 0.05) in the Ca(2+)-free group compared with nontreated OSE. TER was fully restored after 24 h. N-cadherin but not E-cadherin was expressed in the OSE and localized to the cell borders. We conclude that normal human OSE express and form functional TJ both in vivo and vitro. This report also describes a method to study the influence of ovarian-derived mediators on TJ in cultured OSE.  相似文献   

16.
Objective:  After oral administration of chitosan (a copolymer of glucosamine and N-acetylglucosamine), mesenteric lymph node (MLN) lymphocytes exhibited traits of anergy, a process coupled with inability of mature T cells to proliferate. We wondered whether biological activity of chitosan could be affecting division of lymphocytes at the mucosal inductive sites.
Materials and methods:  We studied the effect of chitosan on proliferation of carboxyfluorescein diacetate-labelled MLN lymphocytes stimulated with concanavalin A in vitro . We assessed expression of CD25 and CD71 activation markers and pro-apoptotic molecule CD95L. Moreover, we studied the effect of chitosan ex vivo , in carboxyfluorescein diacetate-labelled MLN cells isolated after feeding single or repetitive doses of the polysaccharide, and we evaluated cell cycle parameters.
Results:  Chitosan suppressed cell proliferation and down-modulated expression of CD25 in these MLN CD4+ cells isolated from normal rats. After in vivo contact, chitosan inhibited proliferation of MLN cells and reduced secretion of interferon-gamma. Furthermore, sustained feeding produced reduction in percentage of CD4+ cells in S phase of the cell cycle.
Conclusion:  Here we demonstrate the ability of chitosan to suppress proliferation of CD4+ lymphocytes from mucosal inductive sites in vivo and in vitro This effect could be relevant in modulatory activity of chitosan in the intestinal microenvironment.  相似文献   

17.
18.
Lin RZ  Lin RZ  Chang HY 《Biotechnology journal》2008,3(9-10):1172-1184
Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号