共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular endosymbionts, Wolbachia spp., have been reported in many different orders of insects and in nematodes but not previously in fleas. This is the first conclusive report of Wolbachia spp. within members of the Siphonaptera. Using nested polymerase chain reaction (PCR) targeting of the 16S ribosomal RNA gene, we screened for Wolbachia spp. in fleas collected from 3 counties in Georgia and 1 in New York. The prevalence of Wolbachia spp. detected varied among the 6 different species screened: 21% in the cat flea Ctenocephalides felis (n = 604), 7% in the dog flea C. canis (n = 28), 25% in Polygenus gwyni (n = 8), 80% in Orchopeas howardi (n = 15), 94% in Pulex simulans (n = 255), and 24% in the sticktight flea Echidnophaga gallinacea (n = 101). Wolbachia spp. infection in fleas was confirmed by sequencing positive PCR products, comparing sequenced 16S ribosomal DNA (rDNA) with Wolbachia spp. sequences in GenBank using BLAST search, and subjecting sequence data to phylogenetic analysis. For further confirmation, 16S rDNA-positive samples were reamplified using the wsp gene. 相似文献
2.
S. G. Medvedev 《Entomological Review》2017,97(8):1023-1030
The paper deals with peculiarities of flea structure determined by their parasitism on mammals and birds. On the basis of the data on diversity of morphological characters, the leading role of structures of the frontal and nototrochanteral complexes in the adaptive evolution of Siphonaptera is substantiated. Peculiarities of the pulicoid, ischnopsylloid, palaeopsylloid, and generalized morphological types are analyzed together with examples of narrow morphological specializations. Distribution of fleas of these morphological types over five groups of hosts differing in the degree of mobility and association with nests and burrows is also analyzed. 相似文献
3.
4.
R E Lewis 《The Journal of parasitology》1966,52(6):1167-1171
5.
K P Kadatskaia 《Parazitologiia》1983,17(5):370-374
The factors favouring the cessation of reproduction in X. conformis are laid in the preimaginal state. The drop in temperature during the formation of imago at the pupal stage is a signal for the cessation of reproduction. Imagos hatched at a temperature lower than that of developmental conditions of preimaginal stages do not start reproduction and enter facultative imaginal diapause state. With further decrease in temperature the state of fleas intensifies. With the rise of temperature fleas come out of diapause. In autumn coming out of diapause begins at a temperature higher than 20 degrees, on the 8th--9th day. The lower air temperature the more rapid is coming out of diapause, at a rise of temperature of 3 to 5 degrees. 相似文献
6.
S. G. Medvedev 《Entomological Review》2014,94(3):345-358
The Palaearctic flea fauna includes 921 species and 479 subspecies from 96 genera of 10 families. Of them, 858 species (94%) from 43 genera are endemic to the Palaearctic; they comprise 40% of the Palaearctic Hystrichopsyllidae, 24% of Ceratophyllidae, and 20% of Leptopsyllidae. Ranges of 581 species (63% of the Palaearctic fauna) are situated within one province or subregion of the Palaearctic. Species with ranges including a part of Asia (592) comprise 87% of the total fauna; 72% of the species (517) are endemic to the Palaearctic. The largest centers of taxonomic diversity of Palaearctic fleas are situated in the East Asian, Central Asian, and Turano-Iranian Subregions: 320 species of fleas (214 of them endemic) from 59 genera (8 endemic) are known from the East Asian Subregion; 270 species (over 120 endemic) from 54 genera (5 endemic) are distributed in the Central Asian Subregion. The Turano-Iranian fauna comprises 213 species (103 endemic) from 47 genera (3 endemic); about 160 species occur in the Turanian Subprovince closest to the Russian borders, one-third of them (52 species, or 33%) are endemic; 69 species more are endemic to the entire Asian part of the Palaearctic. Extra-Asian and extra-Siberian ranges are known in 190 flea species. In the western Palaearctic, 76 species are endemic to the European Province, and 57 species, to the Mediterranean Province; 36 species have Euro-Mediterranean distribution. The fauna of the Saharo-Arabian Subregion comprises 30 species (12 endemic), 6 species have ranges of the Mediterranean-Saharo-Arabian type. Scenarios of the origin of the Siphonaptera at the Triassic-Jurassic boundary are hypothesized. Formation of the Palaearctic flea fauna was mostly supported by the Asian-Indo-Malayan and East Asian-Western American palaeofaunal centers of taxonomic diversity. The long history of faunal exchange between the east Palaearctic and the west Nearctic is manifested by the distribution of the parasites of rodents and insectivores, fleas of the genera Stenoponia, Rhadinopsylla, Nearctopsylla, and Catallagia, belonging to several subfamilies of the Hystrichopsyllidae, as well as members of a number of other flea families. A great number of endemic species in the genera Palaeopsylla and Ctenophthalmus (Hystrichopsyllidae), both in the European and Asian parts of the Palaearctic, can be explained by the junction of the European and Asian continental platforms in the late Cretaceous and their subsequent isolation during the Paleocene. A considerable contribution to the flea fauna in the Russian territory was made by the East Asian-Nearctic center of taxonomic diversity, with a smaller role of the European palaeofauna. Immigration of species of the family Pulicidae from the Afrotropical Region is restricted to the southern territories of Russia. 相似文献
7.
Vashchenok VS 《Parazitologiia》2000,34(4):280-287
In experiments, the mean life duration of fleas Leptopsylla segnis on white mice (abundance of fleas within natural limits, up to 10 fleas per mouse) was 22.7 days in females and 18.8 day in males. Maximum life duration was 51 and 37 days respectively. In cases, when the initial numbers of fleas were 20 and 28-34 fleas, the duration of life was decreased. The maximum limit decreased greater than the mean duration of life. A survival dynamics of fleas depended upon the flea number. It was found out, that in cases of high abundance of fleas in the beginning of experiments, the mortality rate of males was lower than in females. During the stay on a host the fleas lost gradually an ability to endure a starvation. Possible mechanisms of the regulation of flea abundance are discussed. 相似文献
8.
Fleas fauna of the Caucasus is considered, possible ways of its formation are discussed. Caucasian fleas belong to 155 species and 40 genera; 23 species are endemics. Hypothesis on Western Palearctic and Eastern Palearctic sources of the Caucasian fleas' fauna formation are proposed. 相似文献
9.
10.
ELBEL RE 《The Journal of parasitology》1951,37(2):119-128
11.
If Mammals are the primary hosts of Siphonaptera, 6% of them have changed their trophic appetency for Birds. What are the reasons, what are the adaptations to be adopted by Fleas, what are the families or species groups of fleas concerned, and at last what are the host-families? As to this last question, it is clear that deviation was ecological but not phyletical. 相似文献
12.
A possibility of alternative prognostication of the autumn abundance of fleas was shown by means of statistical analysis of prognostication tables made up on the basis of the distribution of informative factors: indices of the abundance of the great gerbil, which is the main host of fleas, weather conditions and characteristics of the populations of the fleas. 相似文献
13.
By means of radioactive labelling and mechanical marking of fleas of X. g. minax it was established that they have four generations a year. 相似文献
14.
15.
C Thomas 《Cytobios》1991,67(268):29-43
Five populations of Xenopsylla cheopis exhibit a chromosome complement of 2n = 17, X1X2Y (male), and 2n = 18, X1X1X2X2 (female). A detailed analysis of populations of X. astia from Bombay and Trivandrum led to the identification of two distinct cytotypes which hybridisation studies indicated were sibling species. These are referred to as X. astia with a diploid chromosome number of 2n = 18, X1X2X3Y (male), and 2n = 20, X1X1X2X2X3X3 (female) and X. prasadii with 2n = 10, X1X2Y1Y2 (male), and 2n = 10 X1X1X2X2 (female). It is proposed that X. prasadii is derived from X. astia through translocation/fusion events since the average total chromosome lengths are remarkably similar in all three species. 相似文献
16.
Bartonella are emerging and re-emerging pathogens affecting humans and a wide variety of animals including rodents. Horizontal transmission of Bartonella species by different hematophagous vectors is well acknowledged but vertical transmission (from mother to offspring) is questionable and was never explored in fleas. The aim of this study was to investigate whether the rodent flea, Xenopsylla ramesis, can acquire native Bartonella from wild rodents and transmit it transovarially. For this aim, Bartonella-free laboratory-reared X. ramesis fleas were placed on six naturally Bartonella-infected rodents and six species-matched Bartonella-negative rodents (three Meriones crassus jirds, two Gerbillus nanus gerbils and one Gerbillus dasyurus gerbil) for 7 days, 12-14h per day. The fleas that were placed on the Bartonella-positive rodents acquired four different Bartonella genotypes. Eggs and larvae laid and developed, respectively, by fleas from both rodent groups were collected daily for 7 days and molecularly screened for Bartonella. All eggs and larvae from both groups were found to be negative for Bartonella DNA. Interestingly, two of five gut voids regurgitated by Bartonella-positive fleas contained Bartonella DNA. The naturally infected rodents remained persistently infected with Bartonella for at least 89 days suggesting their capability to serve as competent reservoirs for Bartonella species. The findings in this study indicate that X. ramesis fleas can acquire several Bartonella strains from wild rodents but cannot transmit Bartonella transovarially. 相似文献
17.
Michael F. Whiting Alison S. Whiting Michael W. Hastriter Katharina Dittmar 《Cladistics : the international journal of the Willi Hennig Society》2008,24(5):677-707
Siphonaptera (fleas) is a highly specialized order of holometabolous insects comprising ~2500 species placed in 16 families. Despite a long history of extensive work on flea classification and biology, phylogenetic relationships among fleas are virtually unknown. We present the first formal analysis of flea relationships based on a molecular matrix of four loci (18S ribosomal DNA, 28S ribosomal DNA, Cytochrome Oxidase II, and Elongation Factor 1‐alpha) for 128 flea taxa from around the world representing 16 families, 25 subfamilies, 26 tribes, and 83 flea genera with eight outgroups. Trees were reconstructed using direct optimization and maximum likelihood techniques. Our analysis supports Tungidae as the most basal flea lineage, sister group to the remainder of the extant fleas. Pygiopsyllomorpha is monophyletic, as are the constituent families Lycopsyllidae, Pygiopsyllidae, and Stivaliidae, with a sister group relationship between the latter two families. Macropsyllidae is resolved as sister group to Coptopsyllidae with moderate nodal support. Stephanociricidae is monophyletic, as are the two constituent subfamilies Stephanocircinae and Craneopsyllinae. Vermipsyllidae is placed as sister group to Jordanopsylla. Rhopalopsyllidae is monophyletic as are the two constituent subfamilies Rhopalopsyllinae and Parapsyllinae. Hystrichopsyllidae is paraphyletic with Hystrichopsyllini placed as sister to some species of Anomiopsyllini and Ctenopariini placed as sister to Carterettini. Ctenophthalmidae is grossly paraphyletic with the family broken into seven lineages dispersed on the tree. Most notably, Anomiopsyllini is paraphyletic. Pulicidae and Chimaeropsyllidae are both monophyletic and these families are sister groups. Ceratophyllomorpha is monophyletic and includes Ischnopsyllidae, Ceratophyllidae, and Leptopsyllidae. Leptopsyllidae is paraphyletic as are its constituent subfamilies Amphipsyllinae and Leptopsyllinae and the tribes Amphipsyllini and Leptopsyllini. Ischnopsyllidae is monophyletic. Ceratophyllidae is monophyletic, with a monophyletic Dactypsyllinae nested within Ceratophyllinae, rendering the latter group paraphyletic. Mapping of general host associations on our topology reveals an early association with mammals with four independent shifts to birds. © The Willi Hennig Society 2008. 相似文献
18.
S A Filimonova 《Parazitologiia》1989,23(6):480-488
Changes in the ultrastructure of cells of the intestinal epithelium during the digestion of one blood portion were traced in the fleas L. segnis. It is shown that alongside with the cavity digestion take place elements of intracellular digestion. Hypothetic scheme of the digestive cell functioning is given. 相似文献
19.
20.
Results of analysis of the Caucasian fauna of fleas and their association with mammal and avian hosts are reported. The Caucasian fauna of potential flea hosts comprises about 130 species of mammals and about 470 species of birds. Most of the flea species in the Caucasian fauna (88 out of 155) parasitize rodents, 51 species of which are permanent hosts of different flea species; 13 flea species occur on 11 species of insectivores; 13 flea species, on 13 species of chiropterans; 14 flea species, on 20 species of carnivores. Only 2 flea species parasitize artiodactyles. 54 species of birds are permanent hosts of 23 species of fleas from 4 genera in the Caucasus. Ten types of ranges of flea species are distinguished; host associations of the Caucasian flea species from these groups are discussed. The greatest numbers of hosts from the families Cricetidae, Muridae, and Sciuridae are associated with fleas with Euro-Asian (extra-Siberian), European, Turanian, and Iranian ranges. Soricidae are known as hosts of flea species with European and Euro-Turanian ranges. Four major groups of flea taxa are represented in the Caucasian fauna. The distribution of the first group is determined by the influence of the palaeofauna of the ancient European continent in the early Cenozoic; that of the second group, by the influence of the fauna of the ancient Asian continent during the Paleogene and part of the Neogene; the third, by the influence of the fauna of southern Europe starting with the Miocene. The fourth group comprises the species which immigrated from northern Europe and Asia in the Late Neogene (2–3 mln years ago). 相似文献