首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clotting activity of human fibrinogen was fully inhibited in vitro by peroxynitrite. The decrease of activity followed an exponential function and the concentration of peroxynitrite needed to inhibit 50% of fibrinogen clotting was 22 microM at 25 degrees C. The oxidative modification(s) induced by the peroxynitrite system (i.e. ONOO-, ONOOH and ONOOH*) appeared specifically to affect fibrin clot formation (through the inhibition of fibrinogen polymerization) since the interaction of peroxynitrite-modified fibrinogen with thrombin appeared to be unaffected. The addition of NaHCO3 decreased the peroxynitrite effect on fibrinogen clotting, suggesting that the reactive species formed by the reaction of CO2 with peroxynitrite are less efficient oxidants of peroxynitrite itself. Similar effects were observed after addition of bilirubin, which also exerted a significant protection against peroxynitrite-mediated modification of fibrinogen.  相似文献   

2.
Lipid oxidation and nitration represents a novel area of research of relevance in the understanding of inflammatory processes. Peroxynitrite, the product of the diffusion-limited reaction between nitric oxide and superoxide anion, mediates oxidative modifications in lipid systems including cell membranes and lipoproteins. In this review, we discuss the mechanisms of lipid oxidation and nitration by peroxynitrite as well as the influence of physiological molecules and cell targets to redirect peroxynitrite reactivity. We also provide evidence to support that oxidation/nitration of lipids results in the formation of novel signaling modulators of key lipid-metabolizing enzymes.  相似文献   

3.
Peroxynitrite anion is a reactive and short-lived species and its formation in vivo has been implicated in several human diseases. In view of the potential usefulness of compounds that can protect against peroxynitrite or their reactive intermediates, a study focused on flavonoid compounds was carried out. Since the reactivity of peroxynitrite may be modified by Co2/HCO3-, which is an important plasma buffer, the protection of flavonoids against peroxynitrite was evaluated by their ability to inhibit the peroxynitrite-mediated dihydrorhodamine (DHR123) oxidation with or without physiological concentrations of bicarbonate. Flavonoids from different classes were studied to elucidate which structural features are required for an effective protection. The most efficient flavonoids on protecting DHR123 against oxidation by peroxynitrite have their ability diminished in the presence of bicarbonate, but they maintain the hierarchy established in the absence of bicarbonate. The flavones are the most effective flavonoids and their effects depend mainly on the number of hydroxyl groups. These must include either a catechol group in the B-ring or a hydroxyl group at the 3-position. This work also included some isoflavones, flavanones and a flavanol, which enable us to conclude about the importance of another structural feature: the 2,3-double bond. These results indicate that the ability of flavonoids to protect against peroxynitrite depends on some structural features, also important to scavenge oxygen free radicals and to chelate metal ions. The most efficient flavonoids are effective at low concentrations with IC50 of the same magnitude as Ebselen, a selenocompound that has been reported to be excellent at protecting against peroxynitrite. Their effectiveness at low concentrations is an important aspect to take into account when characterizing a compound as an antioxidant with biological interest.  相似文献   

4.
Peroxynitrite-mediated oxidation of ferrous nitrosylated myoglobin (Mb(II)-NO) involves the transient ferric nitrosylated species (Mb(III)-NO), followed by NO dissociation and formation of ferric myoglobin (Mb(III)). In contrast, peroxynitrite-mediated oxidation of ferrous oxygenated myoglobin (Mb(II)-O2) involves the transient ferrous deoxygenated and ferryl derivatives (Mb(II) and Mb(IV)O, respectively), followed by Mb(III) formation. Here, kinetics of peroxynitrite-mediated oxidation of ferrous carbonylated horse heart myoglobin (Mb(II)-CO) is reported. Values of the first-order rate constant for peroxynitrite-mediated oxidation of Mb(II)-CO (i.e., for Mb(III) formation) and of the first-order rate constant for CO dissociation from Mb(II)-CO (i.e., for Mb(II) formation) are h = (1.2 ± 0.2) × 10−2 s−1 and koff(CO) = (1.4 ± 0.2) × 10−2 s−1, respectively, at pH 7.2 and 20.0 °C. The coincidence of values of h and koff(CO) indicates that CO dissociation represents the rate limiting step of peroxynitrite-mediated oxidation of Mb(II)-CO.  相似文献   

5.
Previous reports proposed that peroxynitrite (ONOO-) oxidizes alpha-tocopherol (alpha-TOH) through a two-electron concerted mechanism. In contrast, ONOO- oxidizes phenols via free radicals arising from peroxo bond homolysis. To understand the kinetics and mechanism of alpha-TOH and gamma-tocopherol (gamma-TOH) oxidation in low-density lipoprotein (LDL) (direct vs. radical), we exposed LDL to ONOO- added as a bolus or an infusion. Nitric oxide (.NO), ascorbate and CO2 were used as key biologically relevant modulators of ONOO- reactivity. Although approximately 80% alpha-TOH and gamma-TOH depletion occurred within 5 min of incubation of 0.8 microM LDL with a 60 microM bolus of ONOO-, an equimolar infusion of ONOO- over 60 min caused total consumption of both antioxidants. gamma-Tocopherol was preserved relative to alpha-TOH, probably due to gamma-tocopheroxyl radical recycling by alpha-TOH. alpha-TOH oxidation in LDL was first order in ONOO- with approximately 12% of ONOO- maximally available. Physiological concentrations of.NO and ascorbate spared both alpha-TOH and gamma-TOH through independent and additive mechanisms. High concentrations of.NO and ascorbate abolished alpha-TOH and gamma-TOH oxidation. Nitric oxide protection was more efficient for alpha-TOH in LDL than for ascorbate in solution, evidencing the kinetically highly favored reaction of lipid peroxyl radicals with.NO than with alpha-TOH as assessed by computer-assisted simulations. In addition, CO2 (1.2 mM) inhibited both alpha-TOH and lipid oxidation. These results demonstrate that ONOO- induces alpha-TOH oxidation in LDL through a one-electron free radical mechanism; thus the inhibitory actions of.NO and ascorbate may determine low alpha-tocopheryl quinone accumulation in tissues despite increased ONOO- generation.  相似文献   

6.
Peroxynitrite-mediated mitochondrial dysfunction   总被引:3,自引:0,他引:3  
Peroxynitrite anion (ONOO(-)) is a potent biological oxidant produced by the near diffusion-limited reaction of superoxide and nitric oxide. Peroxynitrite has been implicated in diverse forms of free radical-induced tissue injury. Experimental evidence showed that exogenous and endogenous peroxynitrite causes alterations of the structure and function of mitochondrial proteins, leading to mitochondrial dysfunction and cellular or organ injury. These data are discussed along with its physiopathological implications.  相似文献   

7.
Kim YM  Lim JM  Kim BC  Han S 《Molecules and cells》2006,21(1):161-165
Dichlorodihydrofluorescein (DCFH(2)) is a widely used probe for intracellular H(2)O(2). However, H(2)O(2) can oxidize DCFH(2) only in the presence of a catalyst, whose identity in cells has not been clearly defined. We compared the peroxidase activity of Cu,Zn-superoxide dismutase (CuZnSOD), cytochrome c, horseradish peroxidase (HRP), Cu(2+), and Fe(3+) under various condi-tions to identify an intracellular catalyst. Enormous increase by bicarbonate in the rate of DCFH(2) oxidation distinguished CuZnSOD from cytochrome c and HRP. Cyanide inhibited the reaction catalyzed by CuZnSOD but accelerated that by Cu(2+) and Fe(3+). Oxidation of DCFH(2) by H(2)O(2) in the presence of a cell lys-ate was also enhanced by bicarbonate and inhibited by cyanide. Confocal microscopy of H(2)O(2)-treated cells showed enhanced DCF fluorescence in the presence of bicarbonate and attenuated fluorescence for the cells pre-incubated with KCN. Moreover, DCF fluorescence was intensified in CuZnSOD-transfected HaCaT and RAW 264.7 cells. We propose that CuZnSOD is a potential intracellular catalyst for the H(2)O(2)-dependent oxidation of DCFH(2).  相似文献   

8.
Peroxynitrite anion is a reactive and short-lived species and its formation in vivo has been implicated in several human diseases. In view of the potential usefulness of compounds that can protect against peroxynitrite or their reactive intermediates, a study focused on flavonoid compounds was carried out. Since the reactivity of peroxynitrite may be modified by [Formula: See Text] which is an important plasma buffer, the protection of flavonoids against peroxynitrite was evaluated by their ability to inhibit the peroxynitrite-mediated dihydrorhodamine (DHR123) oxidation with or without physiological concentrations of bicarbonate. Flavonoids from different classes were studied to elucidate which structural features are required for an effective protection. The most efficient flavonoids on protecting DHR123 against oxidation by peroxynitrite have their ability diminished in the presence of bicarbonate, but they maintain the hierarchy established in the absence of bicarbonate. The flavones are the most effective flavonoids and their effects depend mainly on the number of hydroxyl groups. These must include either a catechol group in the B-ring or a hydroxyl group at the 3-position. This work also included some isoflavones, flavanones and a flavanol, which enable us to conclude about the importance of another structural feature: the 2,3-double bond. These results indicate that the ability of flavonoids to protect against peroxynitrite depends on some structural features, also important to scavenge oxygen free radicals and to chelate metal ions. The most efficient flavonoids are effective at low concentrations with IC50 of the same magnitude as Ebselen, a selenocompound that has been reported to be excellent at protecting against peroxynitrite. Their effectiveness at low concentrations is an important aspect to take into account when characterizing a compound as an antioxidant with biological interest.  相似文献   

9.
Peroxynitrite is a potent reactive oxygen species that is believed to mediate deleterious protein modifications in a wide variety of neurodegenerative disorders. In this study, we have analysed the effects of oxidative damage induced by peroxynitrite on a cysteine-free mutant of dihydrofolate reductase (SE-DHFR), from a functional and a structural point of view. The peroxynitrite-mediated oxidation results in the inhibition, concentration-dependent, of the catalytic activity. This effect is strongly influenced by the HCO(3)(-)/CO(2) buffering system, that we observed to significantly affect the yield of protein oxidation by modulating the peroxynitrite-induced modification of aromatic residues. Because of this effect, in presence of bicarbonate system, we have observed a protection of enzymatic activity of SE-DHFR with regard to peroxynitrite. The thermodynamic stability of the oxidized protein has been studied in comparison with the non-oxidized protein by differential scanning calorimetry. The thermodynamic parameters obtained showed a decrease of stability of SE-DHFR upon oxidation, evaluated in terms of Gibbs free energy of about 1.25 kcal/mol at 25 degrees C, with respect to the non-oxidized protein. Together, these data indicate that structural and functional alterations induced by peroxynitrite may play a direct role in compromising DHFR function in multiple pathological conditions.  相似文献   

10.
Dihydrorhodamine 123 (RhH2) has been used to detect ‘reactive nitrogen species’, including peroxynitrite and its radical decomposition products, peroxynitrite probably oxidizing RhH2 to rhodamine (Rh) via radical products rather than directly. In this study, the radical intermediate (RhH) was generated by pulse radiolysis, and shown to react with oxygen with a rate constant k ∼ 7 × 108 M-1 s-1. This fast reaction was exploited in experiments observing Rh being formed slowly (k ∼ 4-7 × 105 M-1 s-1) from oxidation of RhH2 by nitrogen dioxide in a rate-limiting step, >1000-fold slower than the corresponding oxidation by carbonate radicals. The time-dependent uptake of RhH2 into mammalian cells was measured, with average intracellular levels reaching only ∼10 μM with the protocol used. The combination of low loading and relatively low reactivity of oxidants towards RhH2 compared to competing cellular nucleophiles suggests rather a small fraction of peroxynitrite-derived radicals (mainly CO3) may be scavenged intracellularly by RhH2.  相似文献   

11.
《Free radical research》2013,47(11):1317-1327
Abstract

The peroxynitrite-induced functional impairment of myosin was studied in different reaction conditions, known to alter the oxidative chemistry of peroxynitrite, to better understand the molecular mechanisms of this interaction. It is shown that peroxynitrite is able to enhance the basal MgATPase activity up to 2-fold while inhibiting the actin-stimulated ATPase activity of myosin and that the extent of these functional alterations is dependent on the reaction medium. The observed changes in the stimulation of the MgATPase activity correlate with the extent of carbonyl formation in myosin. The enzyme inhibition is more potent in conditions where the efficiency of tyrosine nitration and peroxynitrite reactivity towards sulphydryls are lower. Together with the observation that reversion of sulphydryl oxidation did not lead to the recovery of myosin functional and structural impairments, these results point out to the importance of protein carbonylation as a post-translational modification in the peroxynitrite-induced myosin functional impairment.  相似文献   

12.
Dihydrocalcein (H2-calcein) is recommended as a superior probe for intracellular radical (ROS) detection as different to dichlorodihydrofluorescein (H2-DCF), its oxidation product calcein is thought not to leak out of cells. We determined whether H2-calcein is a useful tool to measure ROS in vascular smooth muscle cells. In vitro, both compounds were oxidized by peroxynitrite, hydroxyl radicals and peroxidase, but not hydrogen peroxide or nitric oxide. The intracellular half-life of calcein was several hours whereas that of DCF was approximately 5 min. Intracellular ROS, as generated by the angiotensin II (Ang II)-activated NADPH oxidase, did not increase the oxidation of H2-calcein but increased the oxidation of H2-DCF by approximately 50%. Similar changes were detected using electron spin resonance spectroscopy. Inhibition of the NADPH oxidase using gp91ds-tat prevented the Ang II-induced increase in DCF fluorescence, without affecting cells loaded with H2-calcein. Diphenylene iodonium (DPI), which inhibits all flavin-dependent enzymes, including those in the respiratory chain, had little effect on the basal but prevented the Ang II-induced oxidation of H2-DCF. In contrast, DPI inhibited H2-calcein oxidation in non-stimulated cells by almost 50%. Blockade of respiratory chain complex I inhibited H2-calcein oxidation, whereas inhibitors of complex III were without effect. Calcein accumulated in the mitochondria, whereas DCF was localized in the cytoplasm. In submitochondrial particles, H2-calcein, but not H2-DCF inhibited complex I activity.

These observations indicate that H2-DCF is an indicator for intracellular ROS, whereas the oxidation of H2-calcein most likely occurs as a consequence of direct electron transfer to mitochondrial complex I.  相似文献   

13.
Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase.   总被引:69,自引:0,他引:69  
Peroxynitrite (ONOO-), the reaction product of superoxide (O2-) and nitric oxide (NO), may be a major cytotoxic agent produced during inflammation, sepsis, and ischemia/reperfusion. Bovine Cu,Zn superoxide dismutase reacted with peroxynitrite to form a stable yellow protein-bound adduct identified as nitrotyrosine. The uv-visible spectrum of the peroxynitrite-modified superoxide dismutase was highly pH dependent, exhibiting a peak at 438 nm at alkaline pH that shifts to 356 nm at acidic pH. An equivalent uv-visible spectrum was obtained by Cu,Zn superoxide dismutase treated with tetranitromethane. The Raman spectrum of authentic nitrotyrosine was contained in the spectrum of peroxynitrite-modified Cu,Zn superoxide dismutase. The reaction was specific for peroxynitrite because no significant amounts of nitrotyrosine were formed with nitric oxide (NO), nitrogen dioxide (NO2), nitrite (NO2-), or nitrate (NO3-). Removal of the copper from the Cu,Zn superoxide dismutase prevented formation of nitrotyrosine by peroxynitrite. The mechanism appears to involve peroxynitrite initially reacting with the active site copper to form an intermediate with the reactivity of nitronium ion (NO2+), which then nitrates tyrosine on a second molecule of superoxide dismutase. In the absence of exogenous phenolics, the rate of nitration of tyrosine followed second-order kinetics with respect to Cu,Zn superoxide dismutase concentration, proceeding at a rate of 1.0 +/- 0.1 M-1.s-1. Peroxynitrite-mediated nitration of tyrosine was also observed with the Mn and Fe superoxide dismutases as well as other copper-containing proteins.  相似文献   

14.
To investigate whether hepatic stellate cells (HSCs) alter their expression of MMPs after exposure to nitrogen oxide intermediate (NOI), a human hepatic stellate cell line, LI90 cells, was stimulated with an NO donor, SNAP, or a peroxynitrite donor, SIN-1, and the culture supernatants were analyzed by gelatin zymography or anti-MMPs immunoblot. Although SIN-1 did not enhance the secretions of MMP-1 and 13, SIN-1 induced the NF-kappaB activation, MT1-MMP expression and the secretion of activated MMP-2 in LI90 cells. These results suggest that peroxynitrite may contribute to the remodeling of the extracellular matrix in liver by activating pro-MMP-2.  相似文献   

15.
Reynolds MR  Lukas TJ  Berry RW  Binder LI 《Biochemistry》2006,45(13):4314-4326
Alzheimer's disease (AD) is a progressive amnestic dementia typified by abnormal modifications of the microtubule (MT)-associated tau protein that promote its pathological self-assembly and displacement from the MT lattice. Previously, we showed that peroxynitrite (ONOO-) induces the oxidative 3,3'-dityrosine (3,3'-DT) cross-linking and site-selective nitration of tau monomers [Reynolds et al. (2005) Biochemistry 44, 1690-1700]. In the present study, we examined the effects of ONOO(-)-mediated modifications on two key elements of tau pathobiology: (1) the stability of preformed tau filaments and (2) the ability of monomeric tau to promote tubulin assembly. Here, we report that treatment of synthetic tau filaments with ONOO- generates heat-stable, SDS-insoluble aggregates with a significantly reduced mobility by SDS-PAGE compared to that of nontreated filaments. Ultrastructurally, these aggregates appear to be cross-linked via interfilament bridges. Using LC-MS/MS and HPLC with fluorescent detection, we demonstrate that covalent 3,3'-DT linkages are present within these higher-order aggregates. Similar to monomeric tau, filamentous tau exhibits a hierarchical pattern of nitration following ONOO- treatment with site selectivity toward the amino-terminal residues Tyr18 and Tyr29. Further, select nitration of residues Tyr18, Tyr29, Tyr197, and Tyr394, events known to stabilize the pathological Alz-50 conformation [Reynolds et al. (2005) Biochemistry 44, 13997-14009], inhibits the ability of monomeric tau to promote tubulin assembly. This effect is specific for the 3-NT modification, as mutant tau proteins pseudophosphorylated at each Tyr residue are fully competent to stabilize MTs. Collectively, our results suggest that ONOO(-)-mediated modifications stabilize tau filaments via 3,3'-DT bonding and destabilize MTs by site-selective nitration of tau monomers. Moreover, assumption of the Alz-50 conformation may be the mechanism through which tau nitration modulates MT stability.  相似文献   

16.
Gu ZY 《生理科学进展》2001,32(2):135-137
本文探讨过氧亚硝基阴离子(ONOO^-)在内毒素致肺血管损伤中的介导作用和八肽胆囊收缩素(CCK)的保护作用及其机制。结果发现,内毒素主要成分脂多糖(LPS)可诱导大鼠肺组织生成ONOO^-1,ONOO^-能导致肺微血管壁通透性明显增加和肺脏严重病理变化;ONOO^-可引起离体肺动脉反应性异常改变,LPS也可产生类似变化;ONOO^-有较弱的舒血管作用并受到内皮细胞的抑制性调节;LPS诱导培养的牛肺动脉内皮细胞(BPAEC)产生增多的ONOO^-参与介导内皮细胞本身的损伤;CCK能拮抗LPS对BPAEC的损伤效应,此作用由CCK受体介导,并与抑制ONOO^-生成有关。结果提示,清除ONOO^-或减少ONOO^-生成可为防治内毒素引起的急性肺损伤等病理过程提供新对策;CCK是一种有应用前景的细胞保护因子。  相似文献   

17.
18.
Ribonucleotide reductase activity is rate-limiting for DNA synthesis, and inhibition of this enzyme supports cytostatic antitumor effects of inducible NO synthase. The small R2 subunit of class I ribonucleotide reductases contains a stable free radical tyrosine residue required for activity. This radical is destroyed by peroxynitrite, which also inactivates the protein and induces nitration of tyrosine residues. In this report, nitrated residues in the E. coli R2 protein were identified by UV-visible spectroscopy, mass spectrometry (ESI-MS), and tryptic peptide sequencing. Mass analysis allowed the detection of protein R2 as a native dimer with two iron clusters per subunit. The measured mass was 87 032 Da, compared to a calculated value of 87 028 Da. Peroxynitrite treatment preserved the non-heme iron center and the dimeric form of the protein. A mean of two nitrotyrosines per E. coli protein R2 dimer were obtained at 400 microM peroxynitrite. Only 3 out of the 16 tyrosines were nitrated, including the free radical Tyr122. Despite its radical state, that should favor nitration, the buried Tyr122 was not nitrated with a high yield, probably owing to its restricted accessibility. Dose-response curves for Tyr122 nitration and loss of the free radical were superimposed. However, protein R2 inactivation was higher than nitration of Tyr122, suggesting that nitration of the nonconserved Tyr62 and Tyr289 might be also of importance for peroxynitrite-mediated inhibition of E. coli protein R2.  相似文献   

19.
The aim of this study was to investigate the oxidation of two common fluorescent probes, dichlorodihydrofluorescein (DCFH2) and dihydrorhodamine (DHR), and their oxidized forms, dichlorofluorescein and rhodamine, by the radical products of peroxynitrite chemistry, *OH, NO2*, and CO3*-. At pH 8.0-8.2, rate constants for the interaction of carbonate radical with probes were estimated to be 2.6 x 10(8) x M(-1) s(-1) for DCFH2 and 6.7 x 10(8) M(-1) s(-1) for DHR. Nitrogen dioxide interacted more slowly than carbonate radical with these probes: the rate constant for the interaction between NO2* and DCFH2 was estimated as 1.3 x 10(7) M(-1) s(-1). Oxidation of DHR by nitrogen dioxide led to the production of rhodamine, but the kinetics of these reactions were complex. Hydroxyl radical interacted with both probes with rate constants close to the diffusion-controlled limit. We also found that oxidized forms of these fluorescent probes reacted rapidly with carbonate, nitrogen dioxide, and hydroxyl radicals. These data suggest that probe oxidation may often be in competition with reaction of the radicals with cellular antioxidants.  相似文献   

20.
Dihydrorhodamine 123 (DHR 123), 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA), and dihydrorhodamine 6G (DHR 6G) were evaluated as probes for detecting cellular hydrogen peroxide levels in SPC-A-1 lung adenocarcinoma cells. Imaging techniques and fluorescence-activated cell scan were used in the study of the probe responses. Obvious green fluorescence was established after a 25-min exposure. After staining with MitoTracker Orange CM-H2TMRos (a probe for mitochondria) and the abovementioned probes simultaneously, only the DHR 123 and DHR 6G groups exhibited legible green fluorescence in the mitochondrial regions. Furthermore, the DHR 6G group exhibited weaker fluorescence intensity. When 100 microM H2O2 was added to SPC-A-1 cells loaded with these probes, the intracellular fluorescence increased rapidly and significantly. Our results suggest that DHR 123 is superior for the instantaneous detection of cellular hydrogen peroxide in SPC-A-1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号