首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Adenylate cyclase (AC) was localized ultracytochemically in certain tissues of the regenerating planarian Dugesia lugubris. Studies were carried out from one hour after injury up to the 5th day of regeneration. It was found that the greatest amount of active AC appears during the initial hours of regeneration in the membranes of the muscle cells near the wound, in the epithelial cells surrounding the wound, and in rhabdite-forming cells and neoblasts.  相似文献   

2.
Summary In European woodmice the amount and intensity of daily activity was compared to oxygen uptake and to the potential for oxidative metabolism of heart and skeletal muscle. One group of animals was inactivated by exposition to light during night time; another group of animals was trained by enforced running on a treadmill. The oxidative potential of the muscle tissue was assessed by morphometry of capillaries and mitochondria. A novel sampling technique was used which allowed us to obtain morphological data related to single muscles, to muscle groups, and finally to whole body muscle mass.Reducing the spontaneous activity by ten fold had no effect on oxygen uptake nor on capillaries or mitochondria in locomotory muscles. Mitochondrial volume was reduced, however, in heart and diaphragm. Enforced running increased the weight specific maximal oxygen uptake significantly. It also increased the mitochondrial volume in heart and diaphragm as well as in M. tibialis anterior. Capillary densities were neither affected by training nor by inactivation. A significant correlation was found between the capillary density and the volume density of mitochondria in all muscles analysed morphometrically. For the whole skeletal muscle mass of a European woodmouse the inner mitochondrial membranes were estimated to cover 30 m2. The oxygen consumption per unit time and per unit volume of muscle mitochondrion was found to be identical in all groups of animals (4.9 ml O2 min–1 cm–3).Symbols S v (im,m) surface area of inner mitochondrial membranes per unit mitochondrial volume - V v (mt, f) volume density of mitochondria (mitochondrial volume per fiber volume) - V (mt) total mitochondrial volume - V (f) muscle volume - N A (c, f) capillary density - (f) mean fiber cross-sectional area  相似文献   

3.
We studied changes in mitochondrial morphology and function in the smooth muscle of rat colon. Under confocal microscopy, tissues loaded with potentiometric dye displayed rapid and spontaneous depolarization. Cyclosporin A (CsA), inhibitor of the permeability transition pore (PTP), caused an increase in mitochondrial membrane potential (ΔΨm) in tissues from adult young animals. In aged rats these changes were not observed. This suggests that physiological activation of PTP in aged rats is reduced. Electron microscopy showed alterations of the mitochondrial ultrastructure in tissues from aged rats involving a decreased definition of the cristae and fragmentation of the mitochondrial membranes. We also detected an increase in apoptotic cells in the smooth muscle from aged animals. Our results show that the aging process changes PTP activity, the ability to maintain ΔΨm and mitochondrial morphology. It is suggested that these can be associated with mitochondrial damage and cell death.  相似文献   

4.
5.
Ion channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.  相似文献   

6.
Many pathological states involve dysregulation of mitochondrial fusion, fission, or transport. These dynamic events are usually studied in cells lines because of the challenges in tracking mitochondria in tissues. To investigate mitochondrial dynamics in tissues and disease models, we generated two mouse lines withphoto‐activatable mitochondria (PhAM). In the PhAM floxed line, a mitochondrially localized version of the photo‐convertible fluorescent protein Dendra2 (mito‐Dendra2) is targeted to the ubiquitously expressed Rosa26 locus, along with an upstream loxP‐flanked termination signal. Expression of Cre in PhAM floxed cells results in bright mito‐Dendra2 fluorescence without adverse effects on mitochondrial morphology. When crossed with Cre drivers, the PhAM floxed line expresses mito‐Dendra2 in specific cell types, allowing mitochondria to be tracked even in tissues that have high cell density. In a second line (PhAM excised), the expression of mito‐Dendra2 is ubiquitous, allowing mitochondria to be analyzed in a wide range of live and fixed tissues. By using photo‐conversion techniques, we directly measured mitochondrial fusion events in cultured cells as well as tissues such as skeletal muscle. These mouse lines facilitate analysis of mitochondrial dynamics in a wide spectrum of primary cells and tissues, and can be used to examine mitochondria in developmental transitions and disease states. © genesis 1–11, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Mitochondria of liver and heart muscle of mice—processed in the tissue or after isolation—were analysed by quantitative electron microscopy, and their morphometric characteristics were compared with pertinent biochemical parameters. The surface density (per unit mitochondrial volume) of the inner membranes (cristae) of heart-muscle mitochondria was found to be about twice that of liver mitochondria. No significant difference was noted in the surface densities of the outer and inner boundary membranes of either heart muscle or liver mitochondria. Isolated mitochondria, metabolically transformed to the orthodox conformation, showed morphometric characteristics very similar to mitochondria from tissue samples. The surface densities of the inner membranes showed a striking correlation with the content of insoluble mitochondrial protein and the levels of succinate dehydrogenase and cytochrome aa3 reported earlier.  相似文献   

8.
Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSD s) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSD s (n  = 7), compared to controls (n  = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n  = 5) (vs. control, n  = 5) by high‐throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSD s. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSD s. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases.

Cover Image for this Issue: doi: 10.1111/jnc.14177 .
  相似文献   

9.
This study of marsupial hearts explored the aerobic capacities of this group of mammals; recent information suggests that marsupials possess higher aerobic abilities than previously accepted. Characteristics such as heart mass, mitochondrial features and capillary parameters were examined. A comprehensive study of the heart of red kangaroos was included because of the high maximum oxygen consumption of this species. Goats were also included as a reference placental mammal. Marsupials have a heart that is generally larger than that of placentals. The allometric equation for the relationship between heart mass and body mass for marsupials was Mh=7.5Mb0.944 (Mh in g and Mb in kg); the equivalent equation for placental mammals was Mh=6.0Mb0.97. Mitochondrial volume density and inner mitochondrial surface density do not differ between the two mammal groups; although capillary parameters indicated a lower capillary volume in marsupials. Heart size appears to be the major difference between the two groups. The overall pattern seen in marsupials is similar to that of "athletic" placentals and indicates a relatively high aerobic potential.Abbreviations BMR basal metabolic rate - c(K,0) tortuosity factor - Jv(c,f) capillary length density - Mb body mass - Mh heart mass - NA(c,f) numerical capillary density - rc mean capillary radius - S(im,m) total surface area of inner mitochondrial membranes in the heart - Sv(im,m) surface density of the inner mitochondrial membranes - Sv(im,mt) surface density of inner mitochondrial membranes per unit volume of mitochondria - TEM transmission electron microscope - O2max maximum aerobic capacity - V(mt,m) total mitochondrial volume - Vv(f,m) volume fraction of muscle occupied by muscle fibres - Vv(mt,f) mitochondrial volume densityCommunicated by I.D. Hume  相似文献   

10.
This study has identified specific, stereoselective phenylalkylamine (PAA, (±)- [3H]verapamil) binding sites of low-affinity and high-density in cockroach (Periplaneta americana) nervous system and skeletal muscle membranes. Scatchard transformation of equilibrium binding data revealed a single population of binding sites in both tissues with dissociation constants (Kd) of 273 nM and 377 nM and binding capacities (Bmax) of 23 pmol·mg protein?1 and 37pmol·mg protein?1 for cockroach nervous tissue and skeletal muscle membranes, respectively. The PAA binding site in cockroach nervous tissue membranes was found to be dihydropyridine (DHP)-insensitive, whereas the corresponding site in cockroach skeletal muscle membranes was DHP-sensitive. This property of a DHP-sensitive PAA receptor distinguishes the binding sites identified in cockroach skeletal muscle from those in cockroach nervous tissue and indicates that pharmacologically distinct putative Ca2+ channel subtypes are present in insect nerve and muscle. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Changes in membrane lipid composition (membrane remodelling) have been associated with metabolic depression in some aestivating snails but has not been studied in aestivating frogs. This study examined the membrane phospholipid composition of two Australian aestivating frog species Cyclorana alboguttata and Cyclorana australis. The results showed no major membrane remodelling of tissue in either frog species, or in mitochondria of C. alboguttata due to aestivation. Mitochondrial membrane remodelling was not investigated in C. australis. Where investigated in C. alboguttata, total protein and phospholipid content, and citrate synthase (CS) and cytochrome c oxidase (CCO) activities in tissues and mitochondria mostly did not change with aestivation in liver. In skeletal muscle, however, CS and CCO activities, mitochondrial and tissue phospholipids, and mitochondrial protein decreased with aestivation. These decreases in muscle indicate that skeletal muscle mitochondrial content may decrease during aestivation. Na+K+ATPase activity of both frog species showed no effect of aestivation. In C. alboguttata different fat diets had a major effect on both tissue and mitochondrial phospholipid composition indicating an ability to remodel membrane composition that is not utilised in aestivation. Therefore, changes in lipid composition associated with some aestivating snails do not occur during aestivation in these Australian frogs.  相似文献   

12.
Invertebrate gap junctions are composed of Innexin channel proteins that are structurally and functionally analogous to the connexins in vertebrates. In situhybridization experiments have shown that most of the eight known innexingenes in Drosophilaare expressed in a complex and overlapping temporal and spatial profile, with several members showing high levels of expression in developing epithelia of the embryo. To further study the cellular roles of Innexins, we have generated antibodies against Innexins 1 and 2 and studied their protein distribution in the developing embryo. We find that both Innexins are co-expressed in a number of epithelial tissues including the epidermis, the gut and the salivary glands. On the cellular level, we find both proteins localized to the membranes of epithelial cells. Immunohistochemical analysis using cell polarity markers indicates that Innexin 1 is predominantly localized to the baso-lateral domain of epithelial cells, basal to septate junctions. In contrast, we find a variable positioning of Innexin 2 along the apico-basal axis of epithelial cells depending on the type of tissue and organ. Our findings suggest that the distribution of Innexin channel proteins to specific membrane domains of epithelial cells is regulated by tissue specific factors during the development of epithelia in the fly embryo.  相似文献   

13.
The larval fatty acid composition of neutral lipids and membrane lipids was determined in three ethanol-tolerant strains ofDrosophila melanogaster. Dietary ethanol promoted a decrease in long-chain fatty acids in neutral lipids along with enhanced alcohol dehydrogenase (EC 1.1.1.1) activity in all of the strains. Dietary ethanol also increased the incorporation of14C-ethanol into fatty acid ethyl esters (FAEE) by two- to threefold and decreased the incorporation of14C-ethanol into free fatty acids (FFA). When cultured on sterile, defined media with stearic acid at 0 to 5 mM, stearic acid decreased ADH activity up to 33%. In strains not selected for superior tolerance to ethanol, dietary ethanol promoted a loss of long-chain fatty acids in membrane lipids. The loss of long-chain fatty acids in membranes was strongly correlated with increased fluidity in hydrophobic domains of mitochondrial membranes as determined by electron spin resonance and correlated with a loss of ethanol tolerance. In the ethanol-tolerant E2 strain, which had been exposed to ethanol for many generations, dietary ethanol failed to promote a loss of long-chain fatty acids in membrane lipids. We are grateful for the support of National Institutes of Health Grant AA06702 (B.W.G.) and National Science Foundation Grant CHE-891987 (R.G.K.).  相似文献   

14.
With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging‐related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with 31P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction‐induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging‐related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon.  相似文献   

15.
Summary Some physiological properties of a multiple-drug-resistant mutant with a permeability barrier to chloramphenicol and its isogenic parental strain were compared. The ATPase specific activity of plasma and mitochondrial membranes isolated from the mutant strain was approximately 20% lower (P(0.001, Tables 1 and 2) than that of membranes isolated from the isogenic parental strain. Additional evidence of altered mitochondrial function was: (i) the enhanced growth of the parental strain was eliminated by the [rho-] state (Table 3); (ii) the mutant strain had a greater resistance to petite induction by ethidium bromide (Table 4); (iii) the mutant strain was unable to use a nonfermentable energy source for respiratory adaptation (Table 5). It is proposed that a single gene mutation has resulted in an alteration of some physiological properties of the plasma and mitochondrial membranes.  相似文献   

16.
17.
We investigated the uptake, transport, storage and defence mechanisms in the freshwater crab, Potamonautes warreni, harbouring microbial gill infestations and exposed to increasing chronic (0.2, 0.5, 1.0 mg l–1) and acute (2.0 mg l–1) cadmium (Cd) concentrations under controlled laboratory conditions over a period of 21 days. Transmission electron microscopy and X-ray microanalysis revealed that the microbial gill fauna was eliminated on exposure to 0.2 mg Cd2+ l–1 and that Cd became increasingly adsorbed and incorporated into lamellar crystal deposits and permeated the cuticle of the gills of P. warreni. Degeneration of the apical membrane infoldings and vacuolation of epithelial cells occurred concurrently with pinocytosis, endocytosis and pronounced phagocytotic activity in the epithelia and haemal canal of the gills. Elevated Cd exposures (0.5 or 1.0 mg l–1) resulted in the swelling and dissociation of mitochondrial outer membranes together with an increase in transport of Cu, Cl and S by haemocytes in the haemal canal to epithelial tissues depleted in these elements. Cd also accumulated in tightly coiled concentric membrane whorls in the haemal canal, whereas the highest concentrations of Cd were found within aggregates of lysosome-like bodies in cuticulin-secreting cells of the gill stem. Chronic exposure to Cd induced increased fatigue and mild uncoordinated motor activity. In contrast, at an acute exposure of 2.0 mg l–1 over 48 h, P. warreni showed a time-specific rapid loss of motor function, although only mild cellular lesions occurred in the gill tissues. The significance of cellular changes in the gill epithelia and altered motor activity of P. warreni with increased waterborne Cd are discussed as potential biomarker responses in monitoring aquatic pollution.  相似文献   

18.
The aims of this work were to study the mitochondrial function and to evaluate (a) the oxidative stress in real time in an acute model of endotoxemia and (b) the effect of α-lipoic acid (LA, 100 mg/kg) as a therapeutic strategy to be considered. In rats treated with lipopolisaccharide (LPS, 10 mg/kg), a 1.4-fold increase was observed in in situ skeletal muscle chemiluminescence. Experimental sepsis increased oxygen consumption in tissue cubes (1 mm3) by 30% for heart and diaphragm and impaired state 3 mitochondrial respiration rate in the three organs (liver, diaphragm and heart) studied. Only complex I activity in heart and diaphragm and complex IV activity in diaphragm were found impaired in this septic model. The production of NO by submitochondrial membranes was found increased by 80% in the diaphragm and by 35% in the heart of septic rats. The treatment with LA prevented the oxidative stress and mitochondrial dysfunction observed in this model.  相似文献   

19.
Munro D  Blier PU 《Aging cell》2012,11(5):845-855
The deleterious reactive carbonyls released upon oxidation of polyunsaturated fatty acids in biological membranes are believed to foster cellular aging. Comparative studies in mammals and birds have shown that the susceptibility to peroxidation of membrane lipids peroxidation index (PI) is negatively correlated with longevity. Long‐living marine molluscs are increasingly studied as longevity models, and the presence of different types of lipids in the membranes of these organisms raises questions on the existence of a PI–longevity relationship. We address this question by comparing the longest living metazoan species, the mud clam Arctica islandica (maximum reported longevity = 507 year) to four other sympatric bivalve molluscs greatly differing in longevity (28, 37, 92, and 106 year). We contrasted the acyl and alkenyl chain composition of phospholipids from the mitochondrial membranes of these species. The analysis was reproduced in parallel for a mix of other cell membranes to investigate whether a different PI–longevity relationship would be found. The mitochondrial membrane PI was found to have an exponential decrease with increasing longevity among species and is significantly lower for A. islandica. The PI of other cell membranes showed a linear decrease with increasing longevity among species and was also significantly lower for A. islandica. These results clearly demonstrate that the PI also decreases with increasing longevity in marine bivalves and that it decreases faster in the mitochondrial membrane than in other membranes in general. Furthermore, the particularly low PI values for A. islandica can partly explain this species’ extreme longevity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号