首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitogen-activated protein kinase (MAPK) p38α is a key regulator in many cellular processes, whose activity is tightly regulated by upstream kinases, phosphatases and other regulators. Transforming growth factor-β activated kinase 1 (TAK1) is an upstream kinase in p38α signaling, and its full activation requires a specific activator, the TAK1-binding protein (TAB1). TAB1 was also shown to be an inducer of p38α’s autophosphorylation and/or a substrate driving the feedback control of p38α signaling. Here we determined the complex structure of the unphosphorylated p38α and a docking peptide of TAB1, which shows that the TAB1 peptide binds to the classical MAPK docking groove and induces long-range conformational changes on p38α. Our structural and biochemical analyses suggest that TAB1 is a reasonable substrate of p38α, yet the interaction between the docking peptide and p38α may not be sufficient to trigger trans-autophosphorylation of p38α.  相似文献   

2.
The protein kinase TAK1 (transforming growth factor-beta-activated kinase 1), which has been implicated in the activation of MAPK (mitogen-activated protein kinase) cascades and the production of inflammatory mediators by LPS (lipopolysaccharide), IL-1 (interleukin 1) and TNF (tumour necrosis factor), comprises the catalytic subunit complexed to the regulatory subunits, termed TAB (TAK1-binding subunit) 1 and either TAB2 or TAB3. We have previously identified a feedback-control mechanism by which p38alpha MAPK down-regulates TAK1 and showed that p38alpha MAPK phosphorylates TAB1 at Ser(423) and Thr(431). In the present study, we identified two IL-1-stimulated phosphorylation sites on TAB2 (Ser(372) and Ser(524)) and three on TAB3 (Ser(60), Thr(404) and Ser(506)) in human IL-1R cells [HEK-293 (human embryonic kidney) cells that stably express the IL-1 receptor] and MEFs (mouse embryonic fibroblasts). Ser(372) and Ser(524) of TAB2 are not phosphorylated by pathways dependent on p38alpha/beta MAPKs, ERK1/2 (extracellular-signal-regulated kinase 1/2) and JNK1/2 (c-Jun N-terminal kinase 1/2). In contrast, Ser(60) and Thr(404) of TAB3 appear to be phosphorylated directly by p38alpha MAPK, whereas Ser(506) is phosphorylated by MAPKAP-K2/MAPKAP-K3 (MAPK-activated protein kinase 2 and 3), which are protein kinases activated by p38alpha MAPK. Studies using TAB1(-/-) MEFs indicate important roles for TAB1 in recruiting p38alpha MAPK to the TAK1 complex for the phosphorylation of TAB3 at Ser(60) and Thr(404) and in inhibiting the dephosphorylation of TAB3 at Ser(506). TAB1 is also required to induce TAK1 catalytic activity, since neither IL-1 nor TNFalpha was able to stimulate detectable TAK1 activity in TAB1(-/-) MEFs. Surprisingly, the IL-1 and TNFalpha-stimulated activation of MAPK cascades and IkappaB (inhibitor of nuclear factor kappaB) kinases were similar in TAB1(-/-), MEKK3(-/-) [MAPK/ERK (extracellular-signal-regulated kinase) kinase kinase 3] and wild-type MEFs, suggesting that another MAP3K (MAPK kinase kinase) may mediate the IL-1/TNFalpha-induced activation of these signalling pathways in TAB1(-/-) and MEKK3(-/-) MEFs.  相似文献   

3.
The structures of the MAP kinase p38 in complex with docking site peptides containing a phi(A)-X-phi(B) motif, derived from substrate MEF2A and activating enzyme MKK3b, have been solved. The peptides bind to the same site in the C-terminal domain of the kinase, which is both outside the active site and distinct from the "CD" domain previously implicated in docking site interactions. Mutational analysis on the interaction of p38 with the docking sites supports the crystallographic models and has uncovered two novel residues on the docking groove that are critical for binding. The two peptides induce similar large conformational changes local to the peptide binding groove. The peptides also induce unexpected and different conformational changes in the active site, as well as structural disorder in the phosphorylation lip.  相似文献   

4.
The p38α mitogen-activated protein kinase is commonly activated by dual (Thr and Tyr) phosphorylation catalyzed by mitogen-activated protein kinase kinases. However, in T-cells, upon stimulation of the T-cell receptor, p38α is activated via an alternative pathway, involving its phosphorylation by zeta-chain-associated protein kinase 70 on Tyr323, distal from the phosphorylation lip. Tyr323-phosphorylated p38α is autoactivated, resulting in monophosphorylation of Thr180. The conformational changes induced by pTyr323 mediating autoactivation are not known. The lack of pTyr323 p38α for structural studies promoted the search for Tyr323 mutations that may functionally emulate its effect when phosphorylated. Via a comprehensive mutagenesis of Tyr323, we identified mutations that rendered the kinase intrinsically active and others that displayed no activity. Crystallographic studies of selected active (p38αY323Q, p38αY323T, and p38αY323R) and inactive (p38αY323F) mutants revealed that substantial changes in interlobe orientation, extended conformation of the activation loop, and formation of substrate docking DEF site (docking site for extracellular signal-regulated kinase FXF) interaction pocket are associated with p38α activation.  相似文献   

5.
The mitogen-activated protein kinases (MAPKs) play an important role in a variety of biological processes. Activation of MAPKs is mediated by phosphorylation on specific regulatory tyrosine and threonine sites. We have recently found that activation of p38alpha MAPK can be carried out not only by its upstream MAPK kinases (MKKs) but also by p38alpha autophosphorylation. p38alpha autoactivation requires an interaction of p38alpha with TAB1 (transforming growth factor-beta-activated protein kinase 1-binding protein 1). The autoactivation mechanism of p38alpha has been found to be important in cellular responses to a number of physiologically relevant stimuli. Here, we report the characterization of a splicing variant of TAB1, TAB1beta. TAB1 and TAB1beta share the first 10 exons. The 11th and 12th exons of TAB1 were spliced out in TAB1beta, and an extra exon, termed exon beta, downstream of exons 11 and 12 in the genome was used as the last exon in TAB1beta. The mRNA of TAB1beta was expressed in all cell lines examined. The TAB1beta mRNA encodes a protein with an identical sequence to TAB1 except the C-terminal 69 amino acids were replaced with an unrelated 27-amino acid sequence. Similar to TAB1, TAB1beta interacts with p38alpha but not other MAPKs and stimulates p38alpha autoactivation. Different from TAB1, TAB1beta does not bind or activate TAK1. Inhibition of TAB1beta expression with RNA interference in MDA231 breast cancer cells resulted in the reduction of basal activity of p38alpha and invasiveness of MDA231 cells, suggesting that TauAlphaBeta1beta is involved in regulating p38alpha activity in physiological conditions.  相似文献   

6.
Cardiac myocyte apoptosis during ischemia and reperfusion (I/R) is tightly controlled by a complex network of stress-responsive signaling pathways. One pro-apoptotic pathway involves the interaction of the scaffold protein TAB1 with p38 mitogen-activated protein kinase (p38 MAPK) leading to the autophosphorylation and activation of p38 MAPK. Conversely, NO and its second messenger cGMP protect cardiac myocytes from apoptosis during I/R. We provide evidence that the cGMP target cGMP-dependent protein kinase type I (PKG I) interferes with TAB1-p38 MAPK signaling to protect cardiac myocytes from I/R injury. In isolated neonatal cardiac myocytes, activation of PKG I inhibited the interaction of TAB1 with p38 MAPK, p38 MAPK phosphorylation, and apoptosis induced by simulated I/R. During I/R in vivo, mice with a cardiac myocyte-restricted deletion of PKG I displayed a more pronounced interaction of TAB1 with p38 MAPK and a stronger phosphorylation of p38 MAPK in the myocardial area at risk during reperfusion and more apoptotic cardiac myocytes in the infarct border zone as compared with wild-type littermates. Notably, adenoviral expression of a constitutively active PKG I mutant truncated at the N terminus(PKGI-DeltaN1-92) did not inhibit p38 MAPK phosphorylation and apoptosis induced by simulated I/R in vitro, indicating that the N terminus of PKG I is required. As shown by co-immunoprecipitation experiments in HEK293 cells, cGMP-activated PKG I, but not constitutively active PKG I-DeltaN1-92 or PKG I mutants carrying point mutations in the N-terminal leucine-isoleucine zipper, interacted with p38 MAPK, and prevented the binding of TAB1 to p38 MAPK. Together, our data identify a novel interaction between the cGMP target PKG I and the TAB1-p38 MAPK signaling pathway that serves as a defense mechanism against myocardial I/R injury.  相似文献   

7.
MAP kinases bind activating kinases, phosphatases, and substrates through docking interactions. Here, we report a 1.9 A crystallographic analysis of inactive ERK2 bound to a "D motif" docking peptide (pepHePTP) derived from hematopoietic tyrosine phosphatase, a negative regulator of ERK2. In this complex, the complete D motif interaction defined by mutagenic analysis is observed, including extensive electrostatic interactions with the "CD" site of the kinase. Large conformational changes occur in the activation loop where the dual phosphorylation sites, which are buried in the inactive form of ERK2, become exposed to solvent in the complex. Similar conformational changes occur in a complex between ERK2 and a MEK2 (MAP/ERK kinase-2)-derived D motif peptide (pepMEK2). D motif peptides are known to bind homologous loci in the MAP kinases p38alpha and JNK1, also inducing conformational changes in these enzymes. However, the binding interactions and conformational changes are unique to each, thus contributing to specificity among MAP kinases.  相似文献   

8.
Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha   总被引:1,自引:0,他引:1  
TAB1, a subunit of the kinase TAK1, was phosphorylated by SAPK2a/p38alpha at Ser423, Thr431 and Ser438 in vitro. TAB1 became phosphorylated at all three sites when cells were exposed to cellular stresses, or stimulated with tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) or lipopolysaccharide (LPS). The phosphorylation of Ser423 and Thr431 was prevented if cells were pre-incubated with SB 203580, while the phosphorylation of Ser438 was partially inhibited by PD 184352. Ser423 is the first residue phosphorylated by SAPK2a/p38alpha that is not followed by proline. The activation of TAK1 was enhanced by SB 203580 in LPS-stimulated macrophages, and by proinflammatory cytokines or osmotic shock in epithelial KB cells or embryonic fibroblasts. The activation of TAK1 by TNF-alpha, IL-1 or osmotic shock was also enhanced in embryonic fibroblasts from SAPK2a/p38alpha-deficient mice, while incubation of these cells with SB 203580 had no effect. Our results suggest that TAB1 participates in a SAPK2a/p38alpha-mediated feedback control of TAK1, which not only limits the activation of SAPK2a/p38alpha but synchronizes its activity with other signalling pathways that lie downstream of TAK1 (JNK and IKK).  相似文献   

9.
BACKGROUND: The p70 S6 kinase, like several other AGC family kinases, requires for activation the concurrent phosphorylation of a site on its activation loop and a site carboxyterminal to the catalytic domain, situated in a hydrophobic motif site FXXFS/TF/Y, e.g.,Thr412 in p70 S6 kinase (alpha 1). Phosphorylation of the former site is catalyzed by PDK1, whereas the kinase responsible for the phosphorylation of the latter site is not known. RESULTS: The major protein kinase that is active on the p70 S6 kinase hydrophobic regulatory site, Thr412, was purified from rat liver and identified as the NIMA-related kinases NEK6 and NEK7. Recombinant NEK6 phosphorylates p70 S6 kinase at Thr412 and other sites and activates the p70 S6 kinase in vitro and in vivo, in a manner synergistic with PDK1. Kinase-inactive NEK6 interferes with insulin activation of p70 S6 kinase. The activity of recombinant NEK6 is dependent on its phosphorylation, but NEK6 activity is not regulated by PDK1 and is only modestly responsive to insulin and PI-3 kinase inhibitors. CONCLUSION: NEK6 and probably NEK7 are novel candidate physiologic regulators of the p70 S6 kinase.  相似文献   

10.
11.
In anergic T cells, T-cell receptor (TCR)-mediated responses are functionally inactivated by negative regulatory signals whose mechanisms are poorly understood. Here, we show that CD4(+) T cells anergized in vivo by superantigen Mls-1(a) express a scaffolding protein, transforming growth factor beta-activated protein kinase 1-binding protein 1 (TAB1), that negatively regulates TCR signaling through the activation of mitogen-activated protein kinase p38 alpha. TAB1 was not expressed in naive and activated CD4(+) T cells. Inhibition of p38 activity in anergic T cells by a chemical inhibitor resulted in the recovery of interleukin 2 (IL-2) and the inhibition of IL-10 secretion. T-cell hybridoma 2B4 cells transduced with TAB1-containing retrovirus (TAB1-2B4 cells) showed activated p38 alpha, inhibited extracellular signal-regulated kinase (ERK) activity, culminating in reduced IL-2 levels and increased IL-10 production. The use of a p38 inhibitor or cotransfection of a dominant-negative form of p38 in TAB1-2B4 cells resulted in the recovery of ERK activity and IL-2 production. These results imply that TAB1-mediated activation of p38 alpha in anergic T cells regulates the maintenance of T-cell unresponsiveness both by inhibiting IL-2 production and by promoting IL-10 production.  相似文献   

12.
13.
A novel inhibitor of p38 mitogen-activated protein kinase (p38), CMPD1, identified by high-throughput screening, is characterized herein. Unlike the p38 inhibitors described previously, this inhibitor is substrate selective and noncompetitive with ATP. In steady-state kinetics experiments, CMPD1 was observed to prevent the p38alpha-dependent phosphorylation (K(i)(app) = 330 nM) of the splice variant of mitogen-activated protein kinase-activated protein kinase 2 (MK2a) that contains a docking domain for p38alpha and p38beta, but it did not prevent the phosphorylation of ATF-2 (K(i)(app) > 20 microM). In addition to kinetic studies, isothermal titration calorimetry and surface plasmon resonance experiments were performed to elucidate the mechanism of inhibition. While isothermal titration calorimetry analysis indicated that CMPD1 binds to p38alpha, CMPD1 was not observed to compete with ATP for p38alpha, nor was it able to interrupt the binding of p38alpha to MK2a observed by surface plasmon resonance. Therefore, deuterium exchange mass spectrometry (DXMS) was employed to study the p38alpha.CMPD1 inhibitory complex, to provide new insight into the mechanism of substrate selective inhibition. The DXMS data obtained for the p38alpha.CMPD1 complex were compared to the data obtained for the p38alpha.MK2a complex and a p38alpha.active site binding inhibitor complex. Alterations in the DXMS behavior of both p38alpha and MK2a were observed upon complex formation, including but not limited to the interaction between the carboxy-terminal docking domain of MK2a and its binding groove on p38alpha. Alterations in the D(2)O exchange of p38alpha produced by CMPD1 suggest that the substrate selective inhibitor binds in the vicinity of the active site of p38alpha, resulting in perturbations to regions containing nucleotide binding pocket residues, docking groove residues (E160 and D161), and a Mg(2+) ion cofactor binding residue (D168). Although the exact mechanism of substrate selective inhibition by this novel inhibitor has not yet been disclosed, the results suggest that CMPD1 binding in the active site region of p38alpha induces perturbations that may result in the suboptimal positioning of substrates and cofactors in the transition state, resulting in selective inhibition of p38alpha activity.  相似文献   

14.
Regulation of PRAK subcellular location by p38 MAP kinases   总被引:13,自引:0,他引:13       下载免费PDF全文
The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. p38 regulated/activated protein kinase (PRAK, also known as mitogen-activated protein kinase activated protein kinase 5 [MAPKAPK5]) functions downstream of p38alpha and p38beta in mediating the signaling of the p38 pathway. Immunostaining revealed that endogenous PRAK was predominantly localized in the cytoplasm. Interestingly, ectopically expressed PRAK was localized in the nucleus and can be redistributed by coexpression of p38alpha or p38beta to the locations of p38alpha and p38beta. Mutations in the docking groove on p38alpha/p38beta, or the p38-docking site in PRAK, disrupted the PRAK-p38 interaction and impaired the ability of p38alpha and p38beta to redistribute ectopically expressed PRAK, indicating that the location of PRAK could be controlled by its docking interaction with p38alpha and p38beta. Although the majority of PRAK molecules were detected in the cytoplasm, PRAK is consistently shuttling between the cytoplasm and the nucleus. A sequence analysis of PRAK shows that PRAK contains both a putative nuclear export sequence (NES) and a nuclear localization sequence (NLS). The shuttling of PRAK requires NES and NLS motifs in PRAK and can be regulated through cellular activation induced by stress stimuli. The nuclear content of PRAK was reduced after stimulation, which resulted from a decrease in the nuclear import of PRAK and an increase in the nuclear export of PRAK. The nuclear import of PRAK is independent from p38 activation, but the nuclear export requires p38-mediated phosphorylation of PRAK. Thus, the subcellular distribution of PRAK is determined by multiple factors including its own NES and NLS, docking interactions between PRAK and docking proteins, phosphorylation of PRAK, and cellular activation status. The p38 MAPKs not only regulate PRAK activity and PRAK activation-related translocation, but also dock PRAK to selected subcellular locations in resting cells.  相似文献   

15.
Sakurai H  Miyoshi H  Mizukami J  Sugita T 《FEBS letters》2000,474(2-3):141-145
TAK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that is involved in the c-Jun N-terminal kinase/p38 MAPKs and NF-kappaB signaling pathways. Here, we characterized the molecular mechanisms of TAK1 activation by its specific activator TAB1. Autophosphorylation of two threonine residues in the activation loop of TAK1 was necessary for TAK1 activation. Association with TAK1 and induction of TAK1 autophosphorylation required the C-terminal 24 amino acids of TAB1, but full TAK1 activation required additional C-terminal Ser/Thr rich sequences. These results demonstrated that the association between the kinase domain of TAK1 and the C-terminal TAB1 triggered the phosphorylation-dependent TAK1 activation mechanism.  相似文献   

16.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

17.
18.
Transforming growth factor-beta-activated kinase 1 (TAK1) mitogen-activated protein kinase kinase kinase has been shown to be activated by cellular stresses including tumor necrosis factor-alpha (TNF-alpha). Here, we characterized the molecular mechanisms of cellular stress-induced TAK1 activation, focusing mainly on the phosphorylation of TAK1 at Thr-187 and Ser-192 in the activation loop. Thr-187 and Ser-192 are conserved among species from Caenorhabditis elegans to human, and their replacement with Ala resulted in inactivation of TAK1. Immunoblotting with a novel phospho-TAK1 antibody revealed that TNF-alpha significantly induced the phosphorylation of endogenous TAK1 at Thr-187, and subsequently the phosphorylated forms of TAK1 rapidly disappeared. Intermolecular autophosphorylation of Thr-187 was essential for TAK1 activation. RNA interference and overexpression experiments demonstrated that TAK1-binding protein TAB1 and TAB2 were involved in the phosphorylation of TAK1, but they regulated TAK1 phosphorylation differentially. Furthermore, SB203580 and p38alpha small interfering RNA enhanced TNF-alpha-induced Thr-187 phosphorylation as well as TAK1 kinase activity, indicating that the phosphorylation is affected by p38alpha/TAB1/TAB2-mediated feedback control of TAK1. These results indicate critical roles of Thr-187 phosphorylation in the stress-induced rapid and transient activation of TAK1 in a signaling complex containing TAB1 and TAB2.  相似文献   

19.
The SR protein kinase in yeast, Sky1p, phosphorylates yeast SR-like protein, Npl3p, at a single serine residue located at its C terminus. We report here the X-ray crystal structure of Sky1p bound to a substrate peptide and ADP. Surprisingly, an Npl3p-derived substrate peptide occupies a groove 20 A away from the kinase active site. In vitro studies support the substrate-docking role of this groove. Mutagenesis and binding studies reveal that multiple degenerate short peptide motifs located within the RGG domain of Npl3p serve as the substrate docking motifs. However, a single docking motif is sufficient for its stable interaction with the kinase. Methylation of the docking motifs abolishes kinase binding and phosphorylation of Npl3p. Remarkably, removal of the docking groove in the kinase or the docking motifs of the substrate does not reduce the overall catalytic efficiency of the phosphorylation reaction in any significant manner. We suggest that docking interaction between Sky1p and Npl3p is essential for substrate recruitment and binding specificity.  相似文献   

20.
The mechanism by which YopP simultaneously inhibits mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB pathways has been elusive. Ectopic expression of YopP inhibits the activity and ubiquitination of a complex consisting of overexpressed TGF-beta-activated kinase 1 (TAK1) and its subunit TAK1-binding protein (TAB)1, but not of MEK kinase 1. YopP, but not the catalytically inactive mutant YopP(C172A), also suppresses basal and interleukin-1-inducible activation of endogenous TAK1, TAB1 and TAB2. YopP does not affect the interaction of TAK1, TAB1 and TAB2 but inhibits autophosphorylation of TAK1 at Thr 187 and phosphorylation of TAB1 at Ser 438. Glutathione S-transferase-tagged YopP (GST-YopP) binds to MAPK kinase (MAPKK)4 and TAB1 but not to TAK1 or TAB2 in vitro. Furthermore, YopP in synergy with a previously described negative regulatory feedback loop inhibits TAK1 by MAPKK6-p38-mediated TAB1 phosphorylation. Taken together, these data strongly suggest that YopP binds to TAB1 and directly inhibits TAK1 activity by affecting constitutive TAK1 and TAB1 ubiquitination that is required for autoactivation of TAK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号