首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microenvironmental changes in the bone marrow, spleen and liver during progression of the transplantable promyelocytic leukaemia in the Brown Norwegian rat (BNML) have been studied. We used flow cytometry to estimate cellular hypoxia and proliferation based on in vivo pulse-labelling with a mixture of 2-nitroimidazole linked to theophylline (NITP) and bromodeoxyuridine (BrdUrd). The leukaemic cells were identified with the RM124 antibody. In rats inoculated with leukaemic cells the fraction of RM124+ cells was significantly increased from day 20 onwards in the spleen and from day 27 in the bone marrow and liver, reaching a level of 65-87% in these organs at day 32. At day 32, the NITP+ fraction of RM124+ cells had increased significantly in the bone marrow and spleen to 88% and 90%, respectively. The corresponding fractions of NITP+ normal cells reached 63% and 65%, respectively. From day 13 to day 32, the DNA-synthesizing (BrdUrd+) fraction of RM124+ cells in the bone marrow decreased significantly from 52% to 25%, and of normal cells from about 20% to 6%. In the bone marrow and spleen at day 27 and 32, the S-phase and G2/M-phase fractions according to DNA content were higher for the NITP+ than for the NITP- cells. This could partly be explained by an impaired cell cycle progression due to hypoxia. Nevertheless, we found indications of leukaemic cells that were simultaneously labelled with NITP and BrdUrd, in the bone marrow and spleen. These latter findings suggest that in contrast to normal cells some of the leukaemic cells can proliferate even during hypoxia, and this subpopulation may consequently renew and expand the leukaemic cell load.  相似文献   

2.
The influence of arterial hypoxia on bone marrow pressure, regional blood flow and oxygen and carbon dioxide tensions was investigated by simultaneous and continuous measurements in the femoral condyles of 8 rabbits. Arterial hypoxia was obtained by hypoventilation. The subchondral gas tensions and regional blood flow were measured by a previously described technique based on mass spectrometry. Arterial hypoxia caused a significant decrease in subchondral oxygen tension and an increase in subchondral carbon dioxide tension. There was no significant change in bone marrow pressure and regional blood flow.  相似文献   

3.
Therapeutic angiogenesis can be induced by local implantation of bone marrow cells. We tried to enhance the angiogenic potential of this treatment by ex vivo hypoxia stimulation of bone marrow cells before implantation. Bone marrow cells were collected and cultured at 33 degrees C under 2% O(2)-5% CO(2)-90% N(2) (hypoxia) or 95% air-5% CO(2) (normoxia). Cells were also injected into the ischemic hindlimb of rats after 24 h of culture. Hypoxia culture increased the mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial (VE)-cadherin, and fetal liver kinase-1 (Flk-1) from 2.5- to fivefold in bone marrow cells. The levels of VEGF protein in the ischemic hindlimb were significantly higher 1 and 3 days after implantation with hypoxia-cultured cells than with normoxia-cultured or noncultured cells. The microvessel density and blood flow rate in the ischemic hindlimbs were also significantly (P < 0.001) higher 2 wk after implantation with hypoxia-cultured cells (89.7 +/- 5.5%) than with normoxia-cultured cells (67.0 +/- 9.6%) or noncultured cells (70.4 +/- 7.7%). Ex vivo hypoxia stimulation increased the VEGF mRNA expression and endothelial differentiation of bone marrow cells, which together contributed to improved therapeutic angiogenesis in the ischemic hindlimb after implantation.  相似文献   

4.

Background

CXCR4 is the receptor for chemokine CXCL12 and reportedly plays an important role in systemic vascular repair and remodeling, but the role of CXCR4 in development of pulmonary hypertension and vascular remodeling has not been fully understood.

Methods

In this study we investigated the role of CXCR4 in the development of pulmonary hypertension and vascular remodeling by using a CXCR4 inhibitor AMD3100 and by electroporation of CXCR4 shRNA into bone marrow cells and then transplantation of the bone marrow cells into rats.

Results

We found that the CXCR4 inhibitor significantly decreased chronic hypoxia-induced pulmonary hypertension and vascular remodeling in rats and, most importantly, we found that the rats that were transplanted with the bone marrow cells electroporated with CXCR4 shRNA had significantly lower mean pulmonary pressure (mPAP), ratio of right ventricular weight to left ventricular plus septal weight (RV/(LV+S)) and wall thickness of pulmonary artery induced by chronic hypoxia as compared with control rats.

Conclusions

The hypothesis that CXCR4 is critical in hypoxic pulmonary hypertension in rats has been demonstrated. The present study not only has shown an inhibitory effect caused by systemic inhibition of CXCR4 activity on pulmonary hypertension, but more importantly also has revealed that specific inhibition of the CXCR4 in bone marrow cells can reduce pulmonary hypertension and vascular remodeling via decreasing bone marrow derived cell recruitment to the lung in hypoxia. This study suggests a novel therapeutic approach for pulmonary hypertension by inhibiting bone marrow derived cell recruitment.  相似文献   

5.
目的:研究体外大鼠骨髓间充质干细胞(Bone marrow-derived mesenchymal stem cells,BMSCs)在缺血缺氧条件下发生凋亡的作用机制。方法:采取大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并由牛垂体提取物(PEX)诱导扩增传代培养出骨髓间充质干细胞(MSCs)。经形态学和流式细胞仪检测MSCs表面标志物鉴定后,骨髓间充质干细胞(BMSCs)在缺血缺氧条件下培养,通过Annexin V/PI双染细胞凋亡检测比较不同组别细胞的凋亡率和蛋白印迹法(western blot)来观察细胞中蛋白的变化。结果:①经形态学观察和流式细胞仪检测MSCs表面标志物鉴定,提示骨髓间充质干细胞培养成功。②对照组(无缺血缺氧)与缺血缺氧组比较,缺血缺氧组的凋亡率显著性增加,而通过磷酸化Akt的表达量显著性增加提示PI3K(Phosphoinosi-tide-3kinase)/Akt(ProteinkinaseB,PKB)信号通路被激活(P<0.05);同时缺血缺氧组与缺血缺氧+PI3K/Akt抑制剂(LY294002)组比较,缺血缺氧+PI3K/Akt抑制剂(LY294002)组的凋亡率显著降低,而通过磷酸化Akt的表达量显著减少提示PI3K/Akt信号通路被抑制(P<0.05)。结论:PI3K/Akt信号通路对体外缺血缺氧条件下培养的骨髓间充质干细胞凋亡发生有关键性作用。  相似文献   

6.
In acute experiments on rats different agents and their combinations were used to induced hypoxia. In order to estimate the oxygen status of crus bone marrow by taking measurements in subcutaneous fat by a standard electrode with small working surface several electrodes should be used simultaneously. A correlation between subcutaneous and bone-marrow hypoxic tension caused by the hypoxia-induced agents was associated with the subcutaneous fat zone under study. However, in any case, a pronounced pO2 decrease in bone marrow might occur upon slight hypoxic tension.  相似文献   

7.
Induction of marrow hypoxia by radioprotective agents   总被引:1,自引:0,他引:1  
The ability of thiol and non-thiol radioprotectors to induce hypoxia was determined using the binding of [3H]misonidazole by bone marrow cells as a measure of hypoxia. When administered at maximally radioprotective doses, four drugs (WR-2721, cysteamine, 5-hydroxytryptamine, and 16,16-dimethyl prostaglandin E2) significantly increased the amount of [3H]misonidazole bound by marrow cells, while no significant increase in binding was observed with three other agents (endotoxin, AET, superoxide dimutase). Doses of WR-2721 previously shown to provide suboptimal radioprotection did not significantly increase 3H-misonidazole binding. These results suggest that the physiological effects of some radioprotectors, that is, their ability to induce marrow hypoxia, may contribute to their efficacy in vivo.  相似文献   

8.
10 healthy men underwent a 48 hour acute hypobaric hypoxia in the "Taba?" climate chamber imitating conditions of an altitude of 4.00 m. above s.l. The "ascent" and "descent" took 30 minutes each. Blood and bone marrow samples were taken before entering the chamber and immediately after leaving it. A decrease in colony-forming capacity of granulo- and monocyte and fibroblast precursors was shown, along with an increase in functional activity of circulating monocytes and monocyte precursors in bone marrow. A possible role of changes in granulo- and monocytopoiesis and in stromal cells is discussed in relation to the increased morbidity and decreased cicatricial and bone tissue reparation in the mountains.  相似文献   

9.
The sensitizer adduct technique [( 3H]misonidazole binding) was used to assess the extent of murine bone marrow hypoxia following treatment with a variety of radioprotectors. The binding rates previously determined in vivo were compared to those obtained by incubating marrow cells in atmospheres of varying oxygen content. Parallel experiments demonstrated that the oxygen dependence of [3H]misonidazole binding (Km approximately 0.15% oxygen) was similar to the oxygen dependence of marrow radiosensitivity (Km approximately 0.2% oxygen). Maximally radioprotective doses of several drugs have been shown to increase the binding of [3H]misonidazole significantly in vivo. A comparison to the in vitro binding rates suggests that the average oxygen concentration in the marrow at times associated with radioprotection was on the order of 0.5 to 0.8% oxygen. The relative importance of marrow hypoxia to the overall radioprotective effects of different drugs may vary considerably. However, these results have demonstrated that certain radioprotective drugs can induce marrow hypoxia and this reduced pO2 may contribute to the efficacy of these agents.  相似文献   

10.
Serotonin (5HT) decreased in the bone marrow and renal cortex, and hyperserotoninemia developed immediately after one-hour hypoxia. Six-hour hypoxia was followed by an additional decrease of 5-HT in the kidney, medulla, spleen and thymus. Phasic changes of the 5-HT TOOK PLACE at the posthypoxic period. Apparently hypoxia led to the 5-HT mobilization and an increase of its biosynthesis. A possible significance of the 5-HT for the control of hemopoiesis both at the level of the kidney and directly al the level of hemopoietic cells is discussed.  相似文献   

11.
Acute lung exposure to low oxygen results in pulmonary vasoconstriction and redistribution of blood flow. We used human microvascular endothelial cells from lung (HMVEC-L) to study the acute response to oxygen stress. We observed that hypoxia and erythropoietin (EPO) increased erythropoietin receptor (EPOR) gene expression and protein level in HMVEC-L. In addition, EPO dose- and time-dependently stimulated nitric oxide (NO) production. This NO stimulation was evident despite hypoxia induced reduction of endothelial NO synthase (eNOS) gene expression. Western blot of phospho-eNOS (serine1177) and eNOS and was significantly induced by hypoxia but not after EPO treatment. However, iNOS increased at hypoxia and with EPO stimulation compared to normal oxygen tension. In accordance with our previous results of NO induction by EPO at low oxygen tension in human umbilical vein endothelial cells and bone marrow endothelial cells, these results provide further evidence in HMVEC-L for EPO regulation of NO production to modify the effects of hypoxia and cause compensatory vasoconstriction.  相似文献   

12.
Human parvovirus B19 (B19V) causes a variety of human diseases. Disease outcomes of bone marrow failure in patients with high turnover of red blood cells and immunocompromised conditions, and fetal hydrops in pregnant women are resulted from the targeting and destruction of specifically erythroid progenitors of the human bone marrow by B19V. Although the ex vivo expanded erythroid progenitor cells recently used for studies of B19V infection are highly permissive, they produce progeny viruses inefficiently. In the current study, we aimed to identify the mechanism that underlies productive B19V infection of erythroid progenitor cells cultured in a physiologically relevant environment. Here, we demonstrate an effective reverse genetic system of B19V, and that B19V infection of ex vivo expanded erythroid progenitor cells at 1% O(2) (hypoxia) produces progeny viruses continuously and efficiently at a level of approximately 10 times higher than that seen in the context of normoxia. With regard to mechanism, we show that hypoxia promotes replication of the B19V genome within the nucleus, and that this is independent of the canonical PHD/HIFα pathway, but dependent on STAT5A and MEK/ERK signaling. We further show that simultaneous upregulation of STAT5A signaling and down-regulation of MEK/ERK signaling boosts the level of B19V infection in erythroid progenitor cells under normoxia to that in cells under hypoxia. We conclude that B19V infection of ex vivo expanded erythroid progenitor cells at hypoxia closely mimics native infection of erythroid progenitors in human bone marrow, maintains erythroid progenitors at a stage conducive to efficient production of progeny viruses, and is regulated by the STAT5A and MEK/ERK pathways.  相似文献   

13.

Background  

In the bone marrow, hematopietic and mesenchymal stem cells form a unique niche in which the oxygen tension is low. Hypoxia may have a role in maintaining stem cell fate, self renewal and multipotency. However, whereas most studies addressed the effect of transient in vitro exposure of MSC to hypoxia, permanent culture under hypoxia should reflect the better physiological conditions.  相似文献   

14.
Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rγnull (NOG) mice. Hypoxic culture (1% O2) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34+CD38 cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.  相似文献   

15.
Under steady state conditions, erythropoiesis occurs in the bone marrow. However, in mice, stress or tissue hypoxia results in increased erythropoiesis in the spleen. There is increasing evidence that the hematopoietic microenvironment, including endothelial cells, plays an important role in regulating erythropoiesis. Here, we show that short-term expression of constitutively active Akt in the endothelium of mice results in non-anemic stress erythropoiesis in the spleen. The initiation of this stress response was independent of erythropoietin and BMP4, and was observed in endothelial myrAkt1 mice reconstituted with wild-type bone marrow. Together, these data suggest that endothelial cell hyperactivation is a potentially novel pathway of inducing red cell production under stress.  相似文献   

16.
Three days hypoxia (0.5 atm) increased the haemoglobin and haematocrit values in rats paralleled by enhanced intestinal iron absorption. The destination of recently-absorbed iron was primarily the erythropoietic system, viz. bone marrow, spleen and red cells. Total plasma transferrin, was increased by 30%, but no significant changes in mucosal transferrin were found. No increase in labelling of mucosal transferrin by absorbed iron was observed. These results suggest that mucosal transferrin does not play a major role in the regulation of intestinal iron absorption in hypoxia.  相似文献   

17.
In a preceding analysis we hypothesized that the most important parameter controlled by erythropoietic regulation in vivo is the degree of amplification (number of cell divisions) in the CFU-E and erythroblast cell stages. It was concluded that erythropoietic amplification in vivo is controlled according to a sigmoidal dose-response relationship with respect to the control parameter which is the haematocrit (or haemoglobin concentration). Here, this hypothesis is extended to include the differences in murine bone marrow and splenic erythropoiesis that are described and quantified by different dose-response relationships. Comparing several sets of experimental data with mathematical model simulations, this approach leads to the following conclusions: (i) in the unperturbed normal steady state at least one extra erythropoietic cell division takes place in the spleen compared with the bone marrow; (ii) a strong erythropoietic stimulus, such as severe bleeding or hypoxia, can induce five to six additional cell divisions in the spleen but only two to three additional divisions in the bone marrow; this results in a considerable increase in the spleen's contribution to erythropoiesis from about 10% in normal animals to over 40% during strong stimulation; (iii) under erythropoietic suppression, such as red cell transfusion, a similar number of cell divisions is skipped in both organs and the splenic contribution to erythropoiesis remains unchanged. In conclusion, the concept that bone marrow and spleen microenvironments differ in the dose-response relationship for erythropoietic regulation provides an explanation for the changing contribution of splenic murine erythropoiesis following a variety of experimental treatments.  相似文献   

18.
Porphobilinogen is the substrate of two enzymes: porphobilinogen deaminase and porphobilinogen-oxygenase. The first one transforms it into the metabolic precursors of heme and the second diverts it from this metabolic pathway by oxidizing porphobilinogen to 5-oxopyrrolinones. Rat blood is devoid of porphobilinogen-oxygenase under normal conditions while it carries porphobilinogen-deaminase activity. When the rats were submitted to hypoxia (pO2 = 0.42 atm) for 18 days, the activity of porphobilinogen-oxygenase appeared at the tenth day of hypoxia and reached the maximum at the 14–16th day. It decreased to a half after 2 days (half-life of the enzyme) and disappeared after 4 days of return to normal oxygen pressure. Porphobilinogen-deaminase activity increased after the first day of hypoxia, reached a maximum at the 14–16th day and did not decrease to normal values until the 15th day after return to normal oxygen pressure. The activities of both prophobilinogen-oxygenase and porphobilinogen-deaminase were induced by administration of erythropoietin. When rats were made anaemic with phenylhydrazine, porphobilinogen-oxygenase activity also appeared in the blood cells. Although the reticulocyte concentration was higher when compared to that obtained under hypoxia, the activities of the oxygenase obtained under both conditions were comparable. Porphobilinogen-deaminase activity was always closely related to the reticulocyte content. The appearance of porphobilinogen-oxygenase under the described erythropoietic conditions was due to a de novo induction of the enzyme, as shown by its inhibition with actinomycin D and cycloheximide. Porphobilinogen-oxygenase as well as porphobilinogen-deaminase were present in the rat bone marrow under normal conditions. Their activities increased in phenylhydrazine treated rats. The properties and kinetics of porphobilinogen-oxygenase from the rat blood and bone marrow were determined and found to differ in several aspects.  相似文献   

19.
Abstract. In a preceding analysis we hypothesized that the most important parameter controlled by erythropoietic regulation in vivo is the degree of amplification (number of cell divisions) in the CFU-E and erythroblast cell stages. It was concluded that erythropoetic amplification in vivo is controlled according to a sigmoidal dose-response relationship with respect to the control parameter which is the haematocrit (or haemoglobin concentration). Here, this hypothesis is extended to include the differences in murine bone marrow and splenic erythropoiesis that are described and quantified by different dose-response relationships. Comparing several sets of experimental data with mathematical model simulations, this approach leads to the following conclusions: (i) in the unperturbed normal steady state at least one extra erythropoietic cell division takes place in the spleen compared with the bone marrow; (ii) a strong erythropoietic stimulus, such as severe bleeding or hypoxia, can induce five to six additional cell divisions in the spleen but only two to three additional divisions in the bone marrow; this results in a considerable increase in the spleen's contribution to erythropoiesis from about 10% in normal animals to over 40% during strong stimulation; (iii) under erythropoietic suppression, such as red cell transfusion, a similar number of cell divisions is skipped in both organs and the splenic contribution to erythropoiesis remains unchanged. In conclusion, the concept that bone marrow and spleen microenvironments differ in the dose-response relationship for erythropoietic regulation provides an explanation for the changing contribution of splenic murine erythropoiesis following a variety of experimental treatments.  相似文献   

20.
The use of bone marrow mesenchymal stem cell- (MSC) transplantation therapy for cardiac diseases is limited due to poor survival of implanted cells. MicroRNAs (miRNAs) have been reported to be involved in regulating almost all cellular processes, including apoptosis. In this study, we found that the miRNA profile was altered during apoptosis induced by hypoxia and serum deprivation (hypoxia/SD). We further revealed that over-expression of miR-21, miR-23a and miR-210 could promote the survival of MSCs exposed to hypoxia/SD. In contrast, down-regulation of miR-21, miR-23a and miR-503 aggravated apoptosis of MSCs. It was indicated that these miRNAs may play important roles during MSC apoptosis induced by hypoxia/SD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号