首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The available data on maximal running speeds of mammals are presented, and the relationship between speed and body mass is considered. For all mammals ( n = 106), maximal running speed scales as (body mass)0–17; however, the largest mammals are not the fastest, and an optimal size with regards to running ability is suggested ( 119 kg). Maximal running speeds are, on the average, somewhat more than twice maximal aerobic speeds.
Within the Artiodactyla, Carnivora or Rodentia, maximal running speed is mass independent, in agreement with theoretical expectations for geometrically similar animals (Thompson, 1917; Hill, 1950). McMahon's (1975 b ) model for elastic similarity is therefore not supported by the available data on maximal running speeds, and there appears to be no necessary correspondence between scaling of limb bone proportions and running ability.  相似文献   

3.
Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.  相似文献   

4.
Melanopsin confers photosensitivity to a subset of retinal ganglion cells and is responsible for many non-image-forming tasks, like the detection of light for circadian entrainment. Recently, two melanopsin genes, Opn4m and Opn4x, were described in non-mammalian vertebrates. However, only one form, Opn4m, has been described in the mammals, although studies to date have been limited to the placentals and have not included the marsupials. We report here the isolation and characterization of an Opn4 gene from an Australian marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata), and present evidence which suggests that the Opn4x gene was lost before the placental/marsupial split. In situ hybridization shows that the expression of Opn4 in the dunnart eye is restricted to a subset of ganglion cells, a pattern previously reported for rodents and primates. These Opn4-positive cells are randomly distributed across the dunnart retina. We also undertook a comparative analysis with the South American marsupial, the grey short-tailed opossum (Monodelphis domestica), and two placental mammals, mouse and human. This approach reveals that the two marsupials show a higher sequence identity than that seen between rodents and primates, despite separating at approximately the same point in time, some 65-85 Myr ago.  相似文献   

5.
Goswami A 《PloS one》2007,2(10):e995
Studies of morphological integration provide valuable information on the correlated evolution of traits and its relationship to long-term patterns of morphological evolution. Thus far, studies of morphological integration in mammals have focused on placentals and have demonstrated that similarity in integration is broadly correlated with phylogenetic distance and dietary similarity. Detailed studies have also demonstrated a significant correlation between developmental relationships among structures and adult morphological integration. However, these studies have not yet been applied to marsupial taxa, which differ greatly from placentals in reproductive strategy and cranial development and could provide the diversity necessary to assess the relationships among phylogeny, ecology, development, and cranial integration. This study presents analyses of morphological integration in 20 species of australodelphian marsupials, and shows that phylogeny is significantly correlated with similarity of morphological integration in most clades. Size-related correlations have a significant affect on results, particularly in Peramelia, which shows a striking decrease in similarity of integration among species when size is removed. Diet is not significantly correlated with similarity of integration in any marsupial clade. These results show that marsupials differ markedly from placental mammals in the relationships of cranial integration, phylogeny, and diet, which may be related to the accelerated development of the masticatory apparatus in marsupials.  相似文献   

6.
Controversies remain over the relationships among several of the marsupial families and between the three major extant lineages of mammals: Eutheria (placentals), Metatheria (marsupials), and Prototheria (monotremes). Two opposing hypotheses place the marsupials as either sister to the placental mammals (Theria hypothesis) or sister to the monotremes (Palimpsest or Marsupionta hypothesis). A nuclear gene that has proved useful for analyzing phylogenies of vertebrates is the recombination activation gene-1 (RAG1). RAG1 is a highly conserved gene in vertebrates and likely entered the genome by horizontal transfer early in the evolution of jawed vertebrates. Phylogenetic analyses were performed on RAG1 sequences from seven placentals, 28 marsupials, and all three living monotreme species. Phylogenetic analyses of RAG1 sequences support many of the traditional relationships among the marsupials and suggest a relationship between bandicoots (order Peramelina) and the marsupial mole (order Notoryctemorphia), two lineages whose position in the phylogenetic tree has been enigmatic. A sister relationship between South American shrew opossums (order Paucituberculata) and all other living marsupial orders is also suggested by RAG1. The relationship between the three major groups of mammals is consistent with the Theria hypothesis, with the monotremes as the sister group to a clade containing marsupials and placentals.  相似文献   

7.
Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.  相似文献   

8.
This study of marsupial hearts explored the aerobic capacities of this group of mammals; recent information suggests that marsupials possess higher aerobic abilities than previously accepted. Characteristics such as heart mass, mitochondrial features and capillary parameters were examined. A comprehensive study of the heart of red kangaroos was included because of the high maximum oxygen consumption of this species. Goats were also included as a reference placental mammal. Marsupials have a heart that is generally larger than that of placentals. The allometric equation for the relationship between heart mass and body mass for marsupials was Mh=7.5Mb0.944 (Mh in g and Mb in kg); the equivalent equation for placental mammals was Mh=6.0Mb0.97. Mitochondrial volume density and inner mitochondrial surface density do not differ between the two mammal groups; although capillary parameters indicated a lower capillary volume in marsupials. Heart size appears to be the major difference between the two groups. The overall pattern seen in marsupials is similar to that of "athletic" placentals and indicates a relatively high aerobic potential.Abbreviations BMR basal metabolic rate - c(K,0) tortuosity factor - Jv(c,f) capillary length density - Mb body mass - Mh heart mass - NA(c,f) numerical capillary density - rc mean capillary radius - S(im,m) total surface area of inner mitochondrial membranes in the heart - Sv(im,m) surface density of the inner mitochondrial membranes - Sv(im,mt) surface density of inner mitochondrial membranes per unit volume of mitochondria - TEM transmission electron microscope - O2max maximum aerobic capacity - V(mt,m) total mitochondrial volume - Vv(f,m) volume fraction of muscle occupied by muscle fibres - Vv(mt,f) mitochondrial volume densityCommunicated by I.D. Hume  相似文献   

9.
Food habits, energetics, and the reproduction of marsupials   总被引:4,自引:0,他引:4  
Brian K.  McNab 《Journal of Zoology》1986,208(4):595-614
Basal rate of metabolism in marsupials and in eutherian mammals is principally correlated with body mass, food habits and activity. Feeding on fruit, the leaves of woody plants, or invertebrates is associated with low basal rates, especially at large masses, in both groups of mammals. These foods lead to low basal rates because they are seasonally unavailable, are indigestible, or need to be detoxified. The depression in basal rate associated with frugivory and folivory is increased when coupled with sedentary, arboreal habits in both marsupials and eutherians. In contrast, eutherians that feed on vertebrates or herbs generally have high basal rates, while marsupials that eat these foods do not have high basal rates. These foods permit high basal rates, which are exploited by eutherians because high basal rates in these mammals lead to high rates of reproduction. Marsupials have, at best, a limited correlation of reproduction with rate of metabolism, so that feeding on vertebrates or herbs does not lead to high basal rates in these mammals. This difference between marsupials and eutherians in the coupling of reproduction to energetics has at least two ecological consequences. 1) Marsupials generally do not tolerate cold-temperate environments because they do not accelerate growth and development to complete reproduction within a short spring and summer. 2) Marsupials coexist with ecologically similar eutherians as long as marsupials have food habits that are correlated with low rates of metabolism in eutherians (i.e. they feed on fruit, the leaves of woody plants, or invertebrates), but they tend to be displaced by eutherians when marsupials have food habits that are associated with high rates of metabolism in eutherians (i.e. when they feed on vertebrates and, probably, herbs).  相似文献   

10.
Pterigodermatites (P.) spinicaudatis sp. n. from Dromiciops australis is proposed and described. The simple morphology of the ovijector and the presence of a well developed spine between the two cuticular projections at the caudal extremity of the female distinguish the studied nematode from the remainder species of the genus parasitizing South American Edentata, marsupials and cricetid rodents. The distribution area of the hosts of the different species of P. (P.) are given. The studied genus does not parasitize any Australian marsupials. It was found in the endemic South American Microbiotheriidae. This fact suggests from a parasitological point of view that D. australis is not related to the Australian marsupials but to the South American ones.  相似文献   

11.
Marsupials, unlike placental mammals, are believed to be unable to increase heat production and thermal performance after cold-acclimation. It has been suggested that this may be because marsupials lack functional brown fat, a thermogenic tissue, which proliferates during cold-acclimation in many placentals. However, arid zone marsupials have to cope with unpredictable, short-term and occasionally extreme changes in environmental conditions, and thus they would benefit from an appropriate physiological response. We therefore investigated whether a sequential two to four week acclimation in Sminthopsis macroura (body mass approx. 25 g) to both cold (16 degrees C) and warm (26 degrees C) ambient temperatures affects the thermal physiology of the species. Cold-acclimated S. macroura were able to significantly increase maximum heat production (by 27%) and could maintain a constant body temperature at significantly lower effective ambient temperatures (about 9 degrees C lower) than when warm-acclimated. Moreover, metabolic rates during torpor were increased following cold-acclimation in comparison to warm-acclimation. Our study shows that, despite the lack of functional brown fat, short-term acclimation can have significant effects on thermoenergetics of marsupials. It is likely that the rapid response in S. macroura reflects an adaptation to the unpredictability of the climate in their habitat.  相似文献   

12.
The concentration and composition of brain gangliosides of 17 mammalian species belonging to the subclasses of Prototheria (monotremes), Metatheria (marsupials), and Eutheria (placentals) were investigated. The mean concentration of brain gangliosides ranges from 525 to 610 micrograms NeuAc/g wet wt in monotremes, 445-900 micrograms in marsupials and from 630 to 1130 micrograms in the placentals. In the phylogenetic series of mammals, a decrease in the complexity of brain ganglioside composition becomes obvious: a drastic reduction in the number of individual ganglioside fractions particularly those of the c-pathway of biosynthesis, took place from the level of monotremes to that of the marsupials and placentals. In monotremes, marsupials and "lower" placentals (insectivores) the percentage of alkali-labile gangliosides is relatively low (between traces and 5%), whereas in the higher evolved mammals it amounts to about 20% of all gangliosides. The ratio of the contents of the two major mammalian ganglioside fractions GD1a and GT1b is generally in the range of 1.0 and even higher; in the heterothermic platypus from the monotremes and in hibernators among the placental mammals, however, it is much lower (about 0.8). These data support the hypothesis that the brain ganglioside composition not only depends on the phylogenetic level of nervous organization (cephalization) but is additionally correlated with the state of thermal adaptation.  相似文献   

13.
The ontogeny of the skull has been studied in several marsupial groups such as didelphids, microbiotheriids, and dasyurids. Here, we describe and compare the post-weaning ontogeny of the skull in two species of bandicoots, Echymipera kalubu (Echymiperinae) and Isoodon macrourus (Peramelinae), analyzing specific allometric trends in both groups, describing common (and specific) patterns, and discussing them on functional and phylogenetic grounds. Growth patterns were analyzed both qualitatively and quantitatively, including bivariate and multivariate analyses of allometry. We also evaluated character transformation and phylogenetic signals of the allometric patterns in several groups of marsupials and some placentals. We identified morphological changes between juvenile and adult stages in both species of peramelids, many related to the development of the trophic apparatus. Notable differences were detected in the patterns of growth, suggesting divergences in ontogenetic trajectories between both species. Both bivariate and multivariate methods indicate that positive allometries in E. kalubu apply to longitudinal dimensions, whereas in I. macrourus, positive allometries are restricted to vertical dimensions of the skull. The comparison of the allometric trends of two bandicoots with previously studied taxa reveals that although peramelids exhibit a particularly short gestation period and divergent morphology compared to other marsupials, their pattern does not show any particular trend. Some allometric trends seem to be highly conserved among the species studied, showing weak phylogenetic signal. Marsupials in general do not show particular patterns of post-weaning skull growth compared with placentals.  相似文献   

14.
Placental mammals occupy a larger morphospace and are taxonomically more diverse than marsupials by an order of magnitude, as shown by quantitative and phylogenetic studies of several character complexes and clades. Many have suggested that life history acts as a constraint on the evolution of marsupial morphology. However, the frequent circumvention of constraints suggests that the pattern of morphospace occupation in marsupials is more a reflection of lack of ecological opportunity than one of biases in the production of variants during development. Features of marsupial physiology are a potential source of biases in the evolution of the group; these could be coupled with past macroevolutionary patterns that followed conditions imposed by global temperature changes. This is evident at the K/Pg boundary and at the Eocene/Oligocene boundary. The geographic pattern of taxonomic and morphological diversity in placental clades mirrors that of extant placentals as a whole versus marsupials: placentals of northern origin are more diverse those of southern one and include the clades that are outliers in taxonomic (rodents and bats) and ecomorphological (whales and bats) richness.  相似文献   

15.
Patterns of vertebral variation across mammals have seldom been quantified, making it difficult to test hypotheses of covariation within the axial skeleton and mechanisms behind the high level of vertebral conservatism among mammals. We examined variation in vertebral counts within 42 species of mammals, representing monotremes, marsupials and major clades of placentals. These data show that xenarthrans and afrotherians have, on average, a high proportion of individuals with meristic deviations from species' median series counts. Monotremes, xenarthrans, afrotherians and primates show relatively high variation in thoracolumbar vertebral count. Among the clades sampled in our dataset, rodents are the least variable, with several species not showing any deviations from median vertebral counts, or vertebral anomalies such as asymmetric ribs or transitional vertebrae. Most mammals show significant correlations between sacral position and length of the rib cage; only a few show a correlation between sacral position and number of sternebrae. The former result is consistent with the hypothesis that adult axial skeletal structures patterned by distinct mesodermal tissues are modular and covary; the latter is not. Variable levels of correlation among these structures may indicate that the boundaries of prim/abaxial mesodermal precursors of the axial skeleton are not uniform across species. We do not find evidence for a higher frequency of vertebral anomalies in our sample of embryos or neonates than in post-natal individuals of any species, contrary to the hypothesis that stabilizing selection plays a major role in vertebral patterning.  相似文献   

16.
1. Water conservation and energy metabolism in a semiarid-area, neotropical marsupial (Monodelphis domestica) were studied in the laboratory. 2. The rate of energy consumption in this species is low, corresponding with results reported for Australian and other neotropical marsupials. 3. Evaporative water loss rate is low and comparable to that of several desert small rodents, when body size differences are taken into account; however, the ratio of metabolic water production-to-evaporative water loss is lower than in the rodents. 4. Urine osmotic, urea, and chloride concentrations in water-stressed animals are within the range of values reported for some arid-area granivorous rodents, for insectivorous/carnivorous Australian marsupials, and for a North American insectivorous desert rodent. 5. Water-balance computations indicate that this species should be able to maintain water balance at 25 degrees C on a high-protein diet with a water content of about 60% without access to drinking water; this water requirement is comparable to that of ecologically similar marsupials and placentas in arid areas of other continents.  相似文献   

17.
Urbanization is increasing worldwide, fragmenting, isolating or destroying native habitats with a subsequent loss of biodiversity, structural and compositional changes of biotic communities and weakening of the functioning of biological processes and ecosystem services. In urban ecosystems, terrestrial mammals provide important functions and services, but we do not have a synthesis of the impacts of urbanization on terrestrial mammals. Terrestrial mammals are vulnerable to habitat loss and modification caused by urbanization, thus we hypothesised that the abundance and diversity of mammals would decrease as urbanization progresses. In addition, due to the declining number of predators and thus to decreasing predation pressure in urban habitats, we assumed that herbivore and omnivore mammals would gain dominance. To clarify the inconsistency of previous urbanization studies on terrestrial mammals, we synthetized and re-evaluated published results by meta-analysis. Based on 50 rural-urban comparisons, terrestrial mammals were not significantly more abundant or diverse in rural than urban habitats. This was not only found at the community level, but also at the level of taxonomic groups (carnivores, marsupials, rodents), feeding habit (carnivorous, herbivorous or omnivorous species) or at the level of their interactions. Our results suggest that the studied urban-dwelling mammal species are probably well adapted to environmental conditions and pressures accompanied by urbanization via individual-level adaptation.  相似文献   

18.
Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.  相似文献   

19.
Multiple studies have described the anatomy and function of the external ear (pinna) of bats, and other placental mammals, however, studies of marsupial pinna are largely absent. In bats, the tragus appears to be especially important for locating and capturing insect prey. In this study, we aimed to investigate the pinnae of Australian marsupials, with a focus on the presence/absence of tragi and how they may relate to diet. We investigated 23 Australian marsupial species with varying diets. The pinnae measurements (scapha width, scapha length) and tragi (where present) were measured. The interaural distance and body length were also recorded for each individual. Results indicated that all nectarivorous, carnivorous, and insectivorous species had tragi with the exception of the insectivorous striped possum (Dactylopsila trivirgata), numbat (Myrmecobius fasciatus), and nectarivorous sugar glider (Petaurus breviceps). No herbivorous or omnivorous species had tragi. Based on the findings in this study, and those conducted on placental mammals, we suggest marsupials use tragi in a similar way to placentals to locate and target insectivorous prey. The Tasmanian devil (Sarcophilus harrisii) displayed the largest interaural distance that likely aids in better localization and origin of noise associated with prey detection. In contrast, the smallest interaural distance was exhibited by a macropod. Previous studies have suggested the hearing of macropods is especially adapted to detect warnings of predators made by conspecifics. While the data in this study demonstrate a diversity in pinnae among marsupials, including presence and absence of tragi, it suggests that there is a correlation between pinna structure and diet choice among marsupials. A future study should investigate a larger number of individuals and species and include marsupials from Papua New Guinea, and Central and South America as a comparison.  相似文献   

20.
1. The thermal response of isolated perfused hearts of four dasyurid marsupials was determined and compared with that of two rodents. 2. Heart beat rate was strongly temperature dependent in all species. 3. The temperature of cardiac arrest in the species investigated in the present study and of others collected from the literature occurred at a mean of about 13 degrees C in homeotherms, 7 degrees C in daily heterotherms, and 1 degrees C in hibernators. 4. For both marsupials and placentals the temperature of cardiac arrest in hibernators and daily heterotherms correlated with the minimum body temperature during torpor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号