首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

2.
Summary Eleven different secosteroids or steroids (10–10 to 10–8 m) were acutely and reversibly introduced in solutions delivered to the lumen of single proximal tubules of the amphibianNecturus kidney while recording basolateral cell membrane potentialV m. Seven of these molecules (1,25(OH)2D3, 25(OH)D3, 24,25(OH)2D3, 5,6-trans-25(OH)D3, 19-diol-cholesterol, estradiol and testosterone) resulted in changes ofV m (V m) occurring in a few seconds, the largest V m being observed with 1,25(OH)2D3, +6.5±0.75 mV (n=19); these seven (seco)steroids but not the four inactive sterols (vitamin D3, cholesterol, 1D3 and aldosterone) possess a hydroxyl group on at least one carbon of the C17 to C25 lateral chain of the sterol ring. The V m effect was present in Na+-free or Cl-free media, but it was abolished in HCO3-free media. Depolarization of cell membrane potential by addition of glucose, 11mm, in luminal perfusion fluid abolished the 1,25(OH)2D3-evoked V m effect, suggesting dependence of the latter on the absolute value of membrane potential. Barium, a blocking agent of K+ conductances, suppressed the 1,25(OH)2D3-evoked V m effect, even when the proper effects of barium of cell membrane potential were canceled by current clamp. Pretreatment with quinine, a putative blocker of Ca2+-dependent K+ channels also abolished the 1,25(OH)2D3-evoked depolarization. Such observations are consistent with the presence of Ca2+-dependent K+ channels at the apical cell membrane of the proximal tubule, these channels being inactivated by 1,25(OH)2D3 and probably by other (seco)steroids.  相似文献   

3.
Natural abundance of 15N in tropical plants with emphasis on tree legumes   总被引:6,自引:0,他引:6  
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes.  相似文献   

4.
Jia  Yinsuo  Gray  V.M. 《Photosynthetica》2003,41(4):605-610
We determined for Vicia faba L the influence of nitrogen uptake and accumulation on the values of photon saturated net photosynthetic rate (P Nmax), quantum yield efficiency (), intercellular CO2 concentration (C i), and carboxylation efficiency (C e). As leaf nitrogen content (NL) increased, the converged onto a maximum asymptotic value of 0.0664±0.0049 mol(CO2) mol(quantum)–1. Also, as NL increased the C i value fell to an asymptotic minimum of 115.80±1.59 mol mol–1, and C e converged onto a maximum asymptotic value of 1.645±0.054 mol(CO2) m–2 s–1 Pa–1 and declined to zero at a NL-intercept equal to 0.596±0.096 g(N) m–2. fell to zero for an NL-intercept of 0.660±0.052 g(N) m–2. As NL increased, the value of P Nmax converged onto a maximum asymptotic value of 33.400±2.563 mol(CO2) m–2 s–1. P N fell to zero for an NL-intercept of 0.710±0.035 g(N) m–2. Under variable daily meteorological conditions the values for NL, specific leaf area (L), root mass fraction (Rf), P Nmax, and remained constant for a given N supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. L increased with increasing N supply or with increasing NL.  相似文献   

5.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

6.
Jiang  Hua  Wang  Xue-Hua  Deng  Qi-Yun  Yuan  Long-Ping  Xu  Da-Quan 《Photosynthetica》2002,40(1):133-137
Photosynthetic characteristics of two hybrid rice combinations, Peiai 64S/E32 and Shanyou 63, were compared at the panicle differentiation stage. As compared with Shanyou 63, the new combination Peiai 64S/E32 showed a significantly higher net photosynthetic rate (P N), apparent quantum yield of carbon assimilation (c), carboxylation efficiency (CE), and photorespiratory rate (R P) as well as leaf chlorophyll content, but a significantly lower dark respiration rate (R D) and compensation irradiance (I c). It also showed a slightly higher photochemical efficiency (Fv/Fm and F/Fm) of photosystem 2, a lower non-photochemical quenching (qN), and a similar CO2 compensation concentration () as compared to Shanyou 63.  相似文献   

7.
Rotational diffusion properties have been derived for the DNA dodecamer d(CGCGAATTCGCG)2 from 13C R1 and R1 measurements on the C1, C3, and C4 carbons in samples uniformly enriched in 13C. The narrow range of C-H bond vector orientations relative to the DNA axis make the analysis particularly sensitive to small structural deviations. As a result, the R1/R1 ratios are found to fit poorly to the crystal structures of this dodecamer, but well to a recent solution NMR structure, determined in liquid crystalline media, even though globally the structures are quite similar. A fit of the R1/R1 ratios to the solution structure is optimal for an axially symmetric rotational diffusion model, with a diffusion anisotropy, D||/D, of 2.1±0.4, and an overall rotational correlation time, (2D||+4D)–1, of 3.35 ns at 35 °C in D2O, in excellent agreement with values obtained from hydrodynamic modeling.  相似文献   

8.
Large carbonate, bryozoan-serpulid constructions, made by Pentapora fascialis and Salmacina dysteri respectively, were found around karstic freshwater springs, called vruljas, in the Senj Archipelago (Velebit Channel, Croatia). In June 2002, several sites were investigated by SCUBA divers on the rocky cliffs of Grmac and dralova at depths ranging from 19 to 32 m. Mean colony diameter decreased with increasing distance from the vruljas: in the vicinity the mean diameter was 65.8±21 cm, at 2-m distance it was 40.4±8.2. Carbonate contribution was to a great extent due to the bryozoan (5,784±1,186 gm–2 CaCO3) rather than to the serpulid (383±218 gm–2 CaCO3). P. fascialis carbonate standing stock was remarkably high if compared with data from literature for shallow carbonate producers. The bryozoan-serpulid constructions can be indicated as important, even if localised, contributions to the carbonate budget in the Adriatic Sea.  相似文献   

9.
To gain information on extended flight energetics, quasi-natural flight conditions imitating steady horizontal flight were set by combining the tetheredflight wind-tunnel method with the exhaustion-flight method. The bees were suspended from a two-component aerodynamic balance at different, near optimum body angle of attack and were allowed to choose their own speed: their body mass and body weight was determined before and after a flight; their speed, lift, wingbeat frequency and total flight time were measured throughout a flight. These values were used to determine thrust, resultant aerodynamic force (magnitude and tilting angle), Reynolds number, total flight distance and total flight impulse. Flights in which lift was body weight were mostly obtained. Bees, flown to complete exhausion, were refed with 5, 10, 15 or 20 l of a 1.28-mol·l-1 glucose solution (energy content w=18.5, 37.0, 55.5 or 74.0 J) and again flown to complete exhaustion at an ambient temperature of 25±1.5°C by a flight of known duration such that the calculation of absolute and relative metabolic power was possible. Mean body mass after exhaustion was 76.49±3.52 mg. During long term flights of 7.47–31.30 min similar changes in flight velocity, lift, thrust, aerodynamic force, wingbeat frequency and tilting angle took place, independent of the volume of feeding solution. After increasing rapidly within 15 s a more or less steady phase of 60–80% of total flight time, showing only a slight decrease, was followed by a steeper, more irregular decrease, finally reaching 0 within 20–30 s. In steady phases lift was nearly equal to resultant aerodynamic force; tilting angle was 79.8±4.0°, thrust to lift radio did not vary, thrust was 18.0±7.4% of lift, lift was somewhat higher/equal/lower than body mass in 61.3%, 16.1%, 22.6% of all totally analysable flights (n=31). The following parameters were varied as functions of volume of feeding solution (5–20 l in steps of 5 l) and energy content. (18.5–74.0 J in steps of 18.5 J): total flight time, velocity, total flight distance, mean lift, thrust, mean resultant aerodynamic force, tilting angle, total flight impulse, wingbeat frequency, metabolic power and metabolic power related to body mass, the latter related to empty, full and mean (=100 mg) body mass. The following positive correlations were found: L=1.069·10-9 f 2.538; R=1.629·10-9 f 2.464; P m=7.079·10-8 f 2.456; P m=0.008v+0.008; P m=18.996L+0.022; P m=19.782R+0.021; P m=82.143T+0.028; P m=1.245·bm f 1.424 ; P mrel e=6.471·bm f 1.040 ; =83.248+0.385. The following negative correlations were found: V=3.939–0.032; T=1.324·10-4–0.038·10-4. Statistically significant correlations were not found in T(f), L(), R(), f(), P m(bm e), P m rel e(bm e), P m rel f(bm e), P m rel f(bm f).Abbreviations A(m2) frontal area - bl(m) body length - bm(mg) body mass - c(mol·1-1) glucose concentration of feeding solution - c D (dimensionless) drag coefficient, related to A - D(N) drag - F w(N) body weight - F wp weight of paper fragment lost at flight start - f wingbeat frequency (s-1) - g(=9.81 m·s-2) gravitational acceleration - I(Ns)=R(t) dt total impulse of a flight - L(N) lift vertical sustaining force component - P m(J·s-1=W) metabolic power - Pm ret (W·g-1) metabolic power, related to body mass - R(N) resultant aerodynamic force - Re v·bl·v -1 (dimensionless) Reynolds number, related to body length - s(m) v(t) dt virtual flight distance of a flight - s(km) total virtual flight distance - T (N) thrust horizontal force component of horizontal flight - T a (°C) ambient temperature - t(s) time - t tot (s or min) total flight time - v(m·s-1) flight velocity - v(l) volume of feeding solution - W (J) energy and energy content of V - ( °) body angle of attack between body longitudinal axis and flow direction - ( °) tilting angle ( 90°) between R and the horizont in horizontal flight v(=1.53·10-5m2·s-1 for air at 25°) kinematic viscosity - (=1.2 kg·m-3 at 25°C) air density  相似文献   

10.
    
The limited proteolytic pattern of transducin,G t , and its purified subunits with chymotrypsin were analyzed and the cleavage sites on the t subunit were identified. The t subunit in the GTPS bound form was cleaved into a major 38 kD fragment, whereas t -GDP was progressively digested into 38, 23, 21, and 15 kD fragments. The t subunit was not very sensitive to proteolytic digestion with chymotrypsin. The t subunit was not cleaved and only a small portion of t was digested into several fragments. In order to determine which proteolytic fragment of t still contained the carboxyl terminal region, chymotrypsinization was carried out usingG t previously32P-labeled at Cys347 by petrussis toxin-catalyzed ADP-ribosylation. The32P-label was mainly associated with the t subunit and a 15 kD fragment. The 23 and 21 kD fragments were not32P-labeled. Analysis of amino terminal sequences of 38, 21, and 15 kD proteolytic bands allowed the identification of the major cleavage sites. Chymotrypsin had two cleavage sites in the amino terminal region of t , at Leu15 and Leu19. Chymotrypsin removed 15–19 amino acid residues from the amino terminus of t , generating two peptides (38 kD) which comigrates in gel electrophoresis. Chymotrypsin also cleaved at Trp207 in a conformation-dependent manner. Trp207 of t -GTPS was resistant to proteolysis but t -GDP and the 38 kD fragments of t -GDP produced the 23 and 21 kD fragments, respectively, and a 15 kD fragment containing the carboxyl terminus. This proves that the environment of Trp207 changes when GTP or GTPS is bound, leading to its inaccessibility to chymotrypsin.  相似文献   

11.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHCP1–3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

12.
Jacobsen  J. V.  Zwar  J. A.  Chandler  P. M. 《Planta》1985,165(3):430-438
The role of oxygen in the photoinactivation of the photosynthetic apparatus of Spinacia oleracea L. was investigated. Moderate irradiation (1200 mol photons m-2s-1) of spinach leaves in an atmosphere of pure nitrogen caused strong inhibition of subsequently measured net CO2 assimilation, whereas considerably less photoinhibition was observed in the presence of low partial pressures (10–20 mbar) of O2. The decrease in activity caused by anaerobiosis in the light was not based on stomatal closure; the decline of assimilation represents a photoinhibition, as activity was not impaired by low irradiation (80 mol photos m-2s-1). In contrast, gassing with pure N2 in the dark caused strong inhibition. Electron-transport rates and chlorophyll-fluorescence data of thylakoids isolated from photoinhibited leaves indicated damage to the electron-transport system, in particular to photosystem II reaction centers. In vitro, photoinhibition in isolated thylakoid membranes was also strongly promoted by anaerobiosis. Photoinhibition of electron-transport rates under anaerobic conditions was characterized by a pronounced increase in the initial fluorescence level, F0, of chlorophyll-fluorescence induction, in contrast to photoinhibition under aerobic conditions. The results are discussed in terms of two mechanisms of photoinhibition, one that is suppressed and a second that is promoted by oxygen.Abbreviations Chl chlorophyll - DCMU 3-(3, 4-dichlorophenyl)-1,1-dimethylurea - PSI, II photosystem I, II  相似文献   

13.
Two characteristic temperatures were identified from measurements of the temperature dependence of O2 evolution by Chlorella vulgaris and Anacystis nidulans: T1, the threshold temperature for inhibition of O2 evolution under saturating light conditions, and T2, the upper temperature limit for O2 evolution. Measurement of delayed light emission from photosystem II (PSII) showed that it passed through a maximum at T1 and was virtually eliminated on heating the samples to T2. Related changes were observed in low-temperature (77K) fluoresence emission spectra. Heat-stress had little effect on the absorption properties of the cells at temperatures below T1 but incubation at higher temperatures, particularly under high-light conditions, resulted in extensive absorption losses. An analysis of these measurements suggests that this increased susceptibility to photobleaching is triggered by an inhibition of the flow of reducing equivalents from PSII that normally serves to protect the light-harvesting apparatus of the cells from photo-oxidation. Adaptation to higher growth temperatures resulted in increases in the values of T1 and T2 for Anacystis nidulans but not for Chlorella vulgaris.Abbreviations PSI photosystem I - PSII photosystem II - Chl a chlorophyll a - Chl b chlorophyll b - DCMU 3-(3 4 dichlorophenyl)-11-dimethylurea - PC plastocyanin - APC allophycocyanin CIW-DPB Publication No. 887.  相似文献   

14.
We have isolated very high light resistant nuclear mutants (VHL R) in Chlamydomonas reinhardtii, that grow in 1500–2000 mol photons m–2 s–1 (VHL) lethal to wildtype. Four nonallelic mutants have been characterized in terms of Photosystem II (PS II) function, nonphotochemical quenching (NPQ) and xanthophyll pigments in relation to acclimation and survival under light stress. In one class of VHL R mutants isolated from wild type (S4 and S9), VHL resistance was accompanied by slower PS II electron transfer, reduced connectivity between PS II centers and decreased PS II efficiency. These lesions in PS II function were already present in the herbicide resistant D1 mutant A251L (L *) from which another class of VHL R mutants (L4 and L30) were isolated, confirming that optimal PS II function was not critical for survival in very high light. Survival of all four VHL R mutants was independent of CO2 availability, whereas photoprotective processes were not. The de-epoxidation state (DPS) of the xanthophyll cycle pigments in high light (HL, 600 mol photons m–2 s–1) was strongly depressed when all genotypes were grown in 5% CO2. In S4 and S9 grown in air under HL and VHL, high DPS was well correlated with high NPQ. However when the same genotypes were grown in 5% CO2, high DPS did not result in high NPQ, probably because high photosynthetic rates decreased thylakoid pH. Although high NPQ lowered the reduction state of PS II in air compared to 5% CO2 at HL in wildtype, S4 and S9, this did not occur during growth of S4 and S9 in VHL. L * and VHL R mutants L4 and L30, also showed high DPS with low NPQ when grown air or 5% CO2, possibly because they were unable to maintain sufficiently high pH due to constitutively impaired PS II electron transport. Although dissipation of excess photon energy through NPQ may contribute to VHL resistance, there is little evidence that the different genes conferring the VHL R phenotype affect this form of photoprotection. Rather, the decline of chlorophyll per biomass in all VHL R mutants grown under VHL suggests these genes may be involved in regulating antenna components and photosystem stoichiometries.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
The response of effective quantum yield of photosystem 2 (F/Fm) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m–2s–1] highest F/Fm occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, F/Fm was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which F/Fm dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of F/Fm showed significantly higher F/Fm values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on F/Fm, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

16.
The light dependence of quantum yields of Photosystem II (II) and of CO2 fixation were determined in C3 and C4 plants under atmospheric conditions where photorespiration was minimal. Calculations were made of the apparent quantum yield for CO2 fixation by dividing the measured rate of photosynthesis by the absorbed light [A/I=CO2 and of the true quantum yield by dividing the estimated true rate of photosynthesis by absorbed light [(A+Rl)/Ia=CO2·], where RL is the rate of respiration in the light. The dependence of the II/CO2 and II/CO2 * ratios on light intensity was then evaluated. In both C3 and C4 plants there was little change in the ratio of II/CO2 at light intensities equivalent to 10–100% of full sunlight, whereas there was a dramatic increase in the ratio at lower light intensities. Changes in the ratio of II/CO2 can occur because respiratory losses are not accounted for, due to changes in the partitioning of energy between photosystems or changes in the relationship between PS II activity and CO2 fixation. The apparent decrease in efficiency of utilization of energy derived from PS II for CO2 fixation under low light intensity may be due to respiratory loss of CO2. Using dark respiration as an estimate of RL, the calculated II/CO2 * ratio was nearly constant from full sunlight down to approx 5% of full sunlight, which suggests a strong linkage between the true rate of CO2 fixation and PS II activity under varying light intensity. Measurements of photosynthesis rates and II were made by illuminating upper versus lower leaf surfaces of representative C3 and C4 monocots and dicots. With the monocots, the rate of photosynthesis and the ratio of II/CO2 exhibited a very similar patterns with leaves illuminated from the adaxial versus the abaxial surface, which may be due to uniformity in anatomy and lack of differences in light acclimation between the two surfaces. With dicots, the abaxial surface had both lower rates of photosynthesis and lower II values than the adaxial surface which may be due to differences in anatomy (spongy versus palisade mesophyll cells) and/or light acclimation between the two surfaces. However, in each species the response of II/CO2 to varying light intensity was similar between the two surfaces, indicating a comparable linkage between PS II activity and CO2 fixation.Abbreviations A measured rate of CO2 assimilation - A+RL true rate of CO2 assimilation; e - CO2 estimate of electrons transported through PSII per CO2 fixed by RuBP carboxylase - f fraction of light absorbed by Photosystem II - F'm yield of PSII chlorophyll fluorescence due to a saturating flash of white light under steady-state photosynthesis - Fs variable yield of fluorescence under steady-state photosynthesis; PPFD-photosynthetic photon flux density - Ia absorbed PPFD - PS II Photosystem II - Rd rate of respiration in the dark - RI rate of respiration in the light estimated from measurement of Rd or from analysis of quantum yields - apparent quantum yield of CO2 assimilation under a given condition (A/absorbed PPFD) - true quantum yield of CO2 assimilation under a given condition [(A+RL)/(absorbed PPFD)] - quantum yield for photosynthetic O2 evolution - electrons transported via PS II per quantum absorbed by PS II Supported by USDA Competitive Grant 90-37280-5706.  相似文献   

17.
The 17 base pair operator O R 3 oligonucleotide, which is the preferential binding site for the Cro repressor of phage , was studied by two-dimensional NMR spectroscopy. A sequential assignment procedure based on two-dimensional Nuclear Overhauser Effect (NOESY) and scalar coupling correlated (COSY) NMR spectroscopy, together with the knowledge of the oligodesoxynucleotide sequence, made it possible to assign the non-exhangeable base protons and the H1 and the H2-H2 sugar protons of the O R 3 operator DNA. The pattern of the observed NOE connectivities is consistent with a right-handed helical DNA structure. The base and sugar proton assignments provide the necessary information for further studies of the O R 3 operator — Cro repressor interaction.Abbreviations COSY correlated spectroscopy - FID free induction decay - NOE nuclear Overhauser effect - NOESY nuclear Overhauser effect spectroscopy - RD relaxation delay - TSP sodium 3-trimethylsilyl-(2,2,3,3-2H4)propionate - EDTA sodium ethylendiamine tetraacetate  相似文献   

18.
The functional size of Photosystem II (PS II) was investigated by radiation inactivation. The technique provides an estimate of the functional mass required for a specific reaction and depends on irradiating samples with high energy -rays and assaying the remaining activity. The analysis is based on target theory that has been modified to take into account the temperature dependence of radiation inactivation of proteins. Using PS II enriched membranes isolated from spinach we determined the functional size of primary charge separation coupled to water oxidation and quinone reduction at the QB site: H2O (Mn)4 Yz P680 Pheophytin Q phenyl-p-benzoquinone. Radiation inactivation analysis indicates a functional mass of 88 ± 12 kDa for electron transfer from water to phenyl-p-benzoquinone. It is likely that the reaction center heterodimer polypeptides, D1 and D2, contribute approximately 70 kDa to the functional mass, in which case polypeptides adding up to approximately 20 kDa remain to be identified. Likely candidates are the and subunits of cytochrome b 559and the 4.5 kDa psbI gene product.Abbreviations Cyt cytochrome - PS Photosystem - P680 primary electron donor of Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II - Yz tyrosine donor to P680  相似文献   

19.
D. Meyer  A. Jungk 《Plant and Soil》1993,149(2):235-243
To predict the contribution of soil K fractions of different mobility to K supply of plants, the kinetics of K release from soil was related to the kinetics of K uptake of young sugar beet and wheat plants. For this purpose K release rates from soil were measured by continuously percolating samples of a luvisol with 0.01 M CaCl2 solution and effective diffusion coefficients, De, were determined. Two soil K fractions of different mobility were obtained. De values of the more mobile exchangeable K and the less mobile non-exchangeable K fraction were found to be 58.9 × 10–9 and 8.2 × 10–9 cm2 s–1, respectively. In a pot experiment, sugar beet and wheat plants were grown, for 15 days and both root growth and K uptake were measured. K uptake kinetics of both crops was determined in a separate experiment using flowing solution culture. To integrate these data quantitatively, the simulation model of Claassen et al. (1986) was applied. Results show that calculated total K uptake agreed closely with real K uptake of the plants. On this basis, 64 and 79% of the K taken up by wheat and sugar beet plants was derived from the rapidly released exchangeable and 21–36% from the less mobile non-exchangeable soil K fraction.  相似文献   

20.
4-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-6-O-benzoyl--D-galactopyranosyl)--D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-1-thio-2-trichloroacetamido--D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-(1 3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido--D-galactopyranosyl)-(1 4)-(2,3-di-O-benzyl-6-O-benzoyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of -D-Gal-(1 3)--D-GalNAc-(1 4)--D-Gal-(1 4)--D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3-O-glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,6-di-O-benzyl--D-galactopyranosyl)--D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero--D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)oate]-(2 3)-(2,6-di-O-benzyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl) 1-thio-2-trichloroacetamido--D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-(1 3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido--D-galactopyranosyl)-(1 4)-{[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)onate]-(2 3)}-(2,6-di-O-benzyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of -D-Gal-(1 3)--D-GalNAc-(1 4)-[-D-Neu5Ac-(2 3)]--D-Gal-(1 4)--D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号