共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Jocelyn de Lara Karen L. Wydner Katherine M. Hyland W. Steven Ward 《Journal of cellular biochemistry》1993,53(3):213-221
The flat, hooked-shaped architecture of the hamster sperm nucleus makes this an excellent model for in situ hybridization studies of the three dimensional structure of the genome. We have examined the structure of the telomere repeat sequence (TTAGGG)n with respect to the various nuclear structures present in hamster spermatozoa, using fluorescent in situ hybridization. In fully condensed, mature sperm nuclei, the telomere sequences appeared as discrete spots of various sizes interspersed throughout the volume of the nuclei. While the pattern of these signals was non-random, it varied significantly in different nuclei. These discrete telomere foci were seen to gradually lengthen into linear, beaded signals as sperm nuclei were decondensed, in vitro, and were not associated with the nuclear annulus. We also examined the relationship of telomeres to the sperm nuclear matrix, a residual nuclear structure that retains the original size and shape of the nucleus. In these structures the DNA extends beyond the perimeter of the nucleus to form a halo around it, representing the arrangement of the chromosomal DNA into loop domains attached at their bases to the nuclear matrix. Telomere signals in these structures were also linear and equal in length to those of the decondensed nuclei, and each signal represented part of a single DNA loop domain. The telomeres were attached at one end to the nuclear matrix and extended into the halo. Sperm nuclear matrices treated with Eco RI retained the telomere signals. These data support sperm DNA packaging models in which DNA is coiled into discrete foci, rather than spread out linearly along the length of the sperm nucleus. 相似文献
3.
The telomeric repeat amplification protocol (TRAP) is a two-step process for analyzing telomerase activity in cell or tissue extracts. Recent modifications of this sensitive assay include elimination of radioactivity by using a fluorescently labeled primer instead of a radiolabeled primer. In addition, the TRAP assay has been modified for real-time, quantitative PCR analysis. Here, we describe cost-effective procedures for detection of telomerase activity using a fluorescent-based assay as well as by using real-time PCR. These modified TRAP assays can be accomplished within 4 h (from lysis of samples to analysis of telomerase products). 相似文献
4.
SYBR Green real-time telomeric repeat amplification protocol for the rapid quantification of telomerase activity 总被引:4,自引:1,他引:4 下载免费PDF全文
The sensitive telomeric repeat amplification protocol (TRAP) permits telomerase detection in mammalian cell and tissue extracts with very low telomerase activity levels. Unfortunately, conventional TRAP assays require complex post-amplification procedures, such as polyacrylamide gel electrophoresis and densitometry, to measure telomerase products. Therefore, a real-time quantitative TRAP assay (RQ-TRAP) was optimized in the present study and evaluated in comparison with a commercially available quantitative TRAP kit and by monitoring telomerase activity in human hepatocyte cultures, human hepatoma cell lines and telomerase reconstitution experiments. The novel real-time telomerase detection method has many advantages. Other than sample extraction and real-time cycling, no additional time-consuming steps have to be performed for telomerase quantification; reliable and linear telomerase quantification is possible down to single-cell dilutions without the interference of primer-dimer artifacts, and the costs are less. Moreover, the precision is similar to other amplification-based telomerase quantification assays and the results are comparable to data obtained with two commercially available assays. The closed-tube system reduces the risk of carryover contamination and supports high throughput. In conclusion, RQ-TRAP provides a new tool for the rapid and reliable quantification of telomerase activity. 相似文献
5.
Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). 总被引:34,自引:1,他引:34 下载免费PDF全文
The telomeric repeat amplification protocol (TRAP) assay has been used to test telomerase activity in numerous cancer specimens. We describe primers, controls and quantification methods for the TRAP assay to accurately measure the level of telomerase activity in clinical samples. The assay is reliable and reproducible in routine analyses and can be used to estimate the processivity of telomerase activity. 相似文献
6.
7.
8.
Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. 总被引:6,自引:0,他引:6 下载免费PDF全文
Sequences immediately adjacent to the human Xp/Yp telomere exhibit a high frequency of base substitutional polymorphisms, together with almost complete linkage disequilibrium, to create only a few diverged haplotypes. This sequence divergence has been used to develop a PCR-based system for mapping the distribution of the telomere (TTAGGG) and variant repeats (TGAGGG and TCAGGG) at the proximal end of the telomere repeat array. The distribution of these repeats is extremely variable. Almost all Xp/Yp telomeres are different, indicating a high mutation rate. Some telomere maps associated with the same flanking haplotype show similarities, identifying subsets of telomeres that share a recent common ancestry. Mechanisms underlying the rapid turnover of repeats at the proximal end of the Xp/Yp telomere include intra-allelic processes, such as slippage during replication. Inter-allelic exchanges may occur occasionally, but telomerase activity probably plays only a minor role in the germline turnover of proximally located telomere and variant repeats. 相似文献
9.
In this study we have analysed mouse telomeres by Pulsed Field Gel Electrophoresis (PFGE). A number of specific restriction fragments hybridising to a (TTA-GGG)4 probe in the size range 50-150kb can be detected. These fragments are devoid of sites for most restriction enzymes suggesting that they comprise simple repeats; we argue that most of these are likely to be (TTAGGG)n. Each discrete fragment corresponds to the telomere of an individual chromosome and segregates as a Mendelian character. However, new size variants are being generated in the germ line at very high rates such that inbred mice are heterozygous at all telomeres analysable. In addition we show that specific small (approximately 4-12kb) fragments can be cleaved within some terminal arrays by the restriction enzyme MnII which recognises 5'(N7)GAGG3'. Like the complete telomere-repeat arrays (TRA's) these fragments form new variants at high rates and possibly by the same process. We speculate on the mechanisms that may be involved. 相似文献
10.
11.
A Falchetti L Becherini V Martineti A Morelli S Benvenuti L Picariello L Gennari R Lampugnani C Bordi M L Brandi 《Biochemical and biophysical research communications》1999,265(1):252-255
Telomerase results to be active in human germ, stem cells, several malignant cell tumors and in immortalized cell lines. In order to investigate if molecular mechanisms other than Rb gene inactivation can be helpful to diagnose malignancy of parathyroid tumors, we decided to investigate the presence of active telomerase in homogenates from different pathological parathyroid tissues (hyperplastic, adenomatous, carcinomatous, and normal) and primary cell cultures. The TRAP assay was performed to detect this activity in histologically characterized normal, hyperplastic, adenomatous, and carcinomatous human parathyroid tissues, primary cell lines, and one metastatic tissue from parathyroid carcinoma. Only malignant parathyroid glands and the metastatic tissue were TRAP positive. Our findings suggest that telomerase expression could represent an important molecular mechanism underlying the acquisition and progression of an aggressive phenotype of epithelial parathyroid cells and it may help to predict their malignant potential. The TRAP assay is easy to perform and it could become an additional tool to be included in the harmamentarium for the molecular diagnosis of parathyroid carcinoma. 相似文献
12.
A quantitative method to measure telomerase activity by bioluminescence connected with telomeric repeat amplification protocol. 总被引:3,自引:0,他引:3
Telomerase is expected to be a new biomarker for cancer diagnosis. The telomeric repeat amplification protocol (TRAP) is a sensitive method to detect telomerase activity. However, TRAP and its modified protocols are not always suitable for measuring telomerase activity of a large number of clinical samples to diagnosis cancer because these methods generally require a time-consuming detection step such as gel electrophoresis. To improve the procedure for mass diagnosis, we applied bioluminescence to replace the detection step. Telomerase activity is measured by evaluating the amount of inorganic pyrophosphate generated in PCR amplification of telomerase elongation product, with use of the sensitive enzymatic luminometric inorganic pyrophosphate detection assay (ELIDA). TRAP connected with ELIDA (TRAP-ELIDA) can quantitatively detect telomerase activity within linearity from 2 to 1000 cell equivalents. The ELIDA signals accorded with results of TRAP-SYBR green staining, and the results of ELIDA were significantly correlated to those of TRAP connected with an enzyme-linked immunosorbent assay (TRAP-ELISA) (r(2) = 0.992, P < 0.001). TRAP-ELIDA is a simple and sensitive method to quantify telomerase activity without time-consuming gel electrophoresis. Because TRAP-ELIDA measures telomerase activity with a luminometer, it could be applied to a large number of clinical samples at the same time. 相似文献
13.
Cloned DNA fragments of Drosophila miranda which label all chromosome ends show a basic tandem repeat unit of 4.4 kb. The D. miranda telomere specific tandem repeats do not cross-hybridize with genomic D. melanogaster DNA which itself contains telomere repeat units of 3 kb. For a more detailed analysis of the functional criteria of telomere specific sequences we determined the repetition frequency of the tandem repeat units. As a low estimate we found a repetition frequency of 20 for female D. miranda DNA. This is on average equivalent to 2 telomere repeat units per chromosome end in the female D. miranda karyotype. However, a variable number of tandem repeat units per chromosome end would describe more closely the obtained differences in the labeling intensity between the individual chromosomes (X1L-5). For the D. miranda male DNA we determined a repetition frequency of 90. The frequency difference of 70 copies between male and female DNA must be due to the Y-chromosome. 相似文献
14.
Background
Although much is known about molecular mechanisms that prevent re-initiation of DNA replication on newly replicated DNA during a single cell cycle, knowledge is sparse regarding the regions that are most susceptible to re-replication when those mechanisms are bypassed and regarding the extents to which checkpoint pathways modulate re-replication. We used microarrays to learn more about these issues in wild-type and checkpoint-mutant cells of the fission yeast, Schizosaccharomyces pombe. 相似文献15.
16.
17.
Morgan E. Diolaiti Beth A. Cimini Robin Kageyama Florie A. Charles Bradley A. Stohr 《Nucleic acids research》2013,41(18):e176
The telomerase enzyme plays a critical role in human aging and cancer biology by maintaining telomere length and extending the proliferative lifespan of most stem cells and cancer cells. Despite the importance of this enzyme, our understanding of the mechanisms that regulate its activity and establish telomere length homeostasis in mammalian cells is incomplete, in part because the perfect repetitive nature of telomeric sequence hampers in situ detection of telomere elongation patterns. Here, we describe a novel assay using a mutant telomerase that adds a well-tolerated variant telomeric repeat sequence to telomere ends. By specifically detecting the addition of these variant repeats, we can directly visualize telomere elongation events in human cells. We validate this approach by in situ mapping of telomere elongation patterns within individual nuclei and across a population of cells. 相似文献
18.
19.
20.
Measurement of telomere length in haematopoietic cells using in situ hybridization techniques 总被引:5,自引:0,他引:5
Martens UM Brass V Engelhardt M Glaser S Waller CF Lange W Schmoor C Poon SS Landsdorp PM 《Biochemical Society transactions》2000,28(2):245-250
The DNA of human chromosomes terminates in several kilobases of telomere repeats that are gradually lost with; age and with replication in vitro. Defective telomere maintenance has been shown to be causally linked to cell cycle exit and apoptosis. In order to overcome the limitations imposed by Southern blotting, we have established a quantitative fluorescence in situ hybridization (Q-FISH) technique. This technique allows estimation of telomere length in specific chromosome arms from metaphase cell preparations. Furthermore, we have extended quantitative in situ hybridization to flow cytometry (flow FISH) in order to obtain information on the mean telomere repeat content in suspended cells. Telomere length in granulocytes, monocytes, CD8 and CD4 T lymphocytes and natural killer cells was found to differ slightly in the peripheral blood of adults. However, strikingly longer telomeres were observed in B lymphocytes (approximately 1.3 kb longer), suggesting a functional role for telomere maintenance in this cell subset. In summary, Q-FISH and flow FISH represent new methods for measuring telomere length in single cells and allow studies of telomere dynamics in haematopoietic subpopulations at various stages of normal and abnormal antigen responses. 相似文献