首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutant of human insulin-like growth factor II (IGF II) was constructed by site-directed mutagenesis: the nucleotides coding for Ser33 and Ser39 were changed to yield Arg and Lys, respectively, thus creating two pairs of basic residues, Arg-Arg and Lys-Arg, as flanking sequences of the remaining C domain. [Arg33, Lys39]IGF II was expressed in NIH-3T3 cells as a processed two-chain peptide with a deletion of amino acid residues 37-40 and crosslinked by three disulfide bonds. This des(37-40)[Arg33]IGF II showed 3.6-fold and 7.4-fold reduced affinities to the type 1 and type 2 IGF receptor overexpressing cells, respectively, whereas the thymidine incorporation potency was the same as that of wild-type IGF II. We speculate that the discrepancy between the reduced binding to the type 1 IGF receptor and the full thymidine incorporation potency is due to the 6.1-fold reduced affinity of the expressed mutant to the co-expressed IGF binding protein 3 (IGFBP-3). The results suggest that des(37-40)[Arg33]IGF II assumes a conformation very similar to IGF II, and that the entire length of the C domain is not essential for biological activity.  相似文献   

2.
Five structural analogs of human insulin-like growth factor II (IGF II), [Leu27]IGF II, [Glu27]IGF II, des(62-67)IGF II, des(62-67)[Leu27]IGF II and des(62-67)[Glu27]IGF II were constructed by site-directed mutagenesis and expressed as protein A fusion proteins in E. coli BL21 pLysS cells, cleaved with CNBr and purified by affinity chromatography and HPLC. These mutants were tested for their binding affinities to type 1 and type 2 IGF receptors, to IGF binding protein-3 (IGFBP-3) and for their stimulation of thymidine incorporation into DNA. [Leu27]IGF II exhibits an affinity to the type 2 IGF receptor close to that of wild-type IGF II, but has lost completely the affinity to the type 1 IGF receptor. The results further suggest that the D domain, which is close to Tyr27, forms part of the binding region for the type 1 IGF receptor.  相似文献   

3.
We have used site-directed mutagenesis of a synthetic gene for insulin-like growth factor (IGF) I to prepare three analogs in which specific residues in the A region are replaced with the corresponding residues in the A chain of insulin. The analogs are [Ile41, Glu45, Gln46, Thr49, Ser50, Ile51, Ser53, Tyr55, Gln56]IGF I (A chain mutant), in which residue 41 is changed from threonine to isoleucine and residues 42 to 56 of the A region are replaced, [Thr49, Ser50, Ile51]IGF I, and [Tyr55, Gln56]IGF I. These analogs are all equipotent to IGF I at the type 1 IGF receptor in human placental membranes, and in stimulating the incorporation of [3H]thymidine into DNA in the rat vascular smooth muscle cell line A10. However, the A chain mutant and [Thr49, Ser50, Ile51]IGF I have greater than 20-fold lower relative affinity for the type 2 IGF receptor of rat liver membranes, respectively. In contrast, [Tyr55, Gln56]IGF I has 7-fold higher affinity than IGF I for the type 2 IGF receptor. Residues 49, 50, and 51 in IGF I are Phe-Arg-Ser and are strictly conserved in IGF II. Residues 55 and 56 of IGF I and the corresponding residues in IGF II are Arg-Arg and Ala-Leu, respectively. Thus, the presence of the charged residues at these positions in IGF I appears to be responsible, in part, for the lower affinity of IGF I for the type 2 IGF receptor. In addition to the alterations in affinity for the type 2 IGF receptor, the A chain mutant has a 7-fold increase in affinity for insulin receptors, and [Thr49, Ser50, Ile51]IGF I has a 4-fold lower affinity for acid-stable human serum binding protein. These data strongly suggest that specific determinants in the A region of IGF I are important for maintaining binding to the type 2 IGF receptor, and that these determinants are different from those required for maintaining high affinity for the type 1 IGF receptor.  相似文献   

4.
Insulin-like growth factor-binding protein-3 (IGFBP-3), the major IGFBP in the circulation, sequesters IGF in a stable ternary complex with the acid-labile subunit. The high affinity IGF-binding site is proposed to reside within an N-terminal hydrophobic domain in IGFBP-3, but C-terminal residues have also been implicated in the homologous protein IGFBP-5. We have mutated in various combinations Leu(77), Leu(80), and Leu(81) in the N terminus and Gly(217) and Gln(223) in the C terminus of IGF-BP-3. All mutants retained immunoreactivity toward a polyclonal IGFBP-3 antibody, whereas IGF ligand blotting showed that all of the mutants had reduced binding to IGFs. Both solution IGF binding assays and BIAcore analysis indicated that mutations to the N-terminal region caused greater reduction in IGF binding activity than C-terminal mutations. The combined N- and C-terminal mutants showed undetectable binding to IGF-I but retained <10% IGF-II binding activity. Reduced ternary complex formation was seen only in mutants that had considerably reduced IGF-I binding, consistent with previous studies indicating that the binary IGF.IGFBP-3 complex is required for acid-labile subunit binding. Decreased IGF binding was also reflected in the inability of the mutants to inhibit IGF-I signaling in IGF receptor overexpressing cells. However, when present in excess, IGFBP-3 analogs defined as non-IGF-binding by biochemical assays could still inhibit IGF signaling. This suggests that residual binding activity of IGFBP-3 mutants may still be sufficient to inhibit IGF biological activity and questions the use of such analogs to study IGF-independent effects of IGFBP-3.  相似文献   

5.
With the aim to produce insulin-like growth factors (IGF) with enhanced specificity for the type 1 or type 2 IGF receptors, three mutants of IGF II have been prepared and expressed in NIH-3T3 cells. IGF II mutated at Tyr27 to Leu and Glu showed a 25- and 54-fold decrease in affinity for the type 1 IGF receptor and a 3.4- and 9.2-fold decrease in affinity for the type 2 IGF receptor. IGF II mutated at Phe48 to Glu showed a 18-fold decrease in affinity for the type 2 IGF receptor and a 2.8-fold decrease in affinity for the type 1 IGF receptor. These affinities were measured in radioreceptor assays using type 1 or 2 IGF receptor overexpressing cells. Data obtained on receptor cross-linking and thymidine incorporation assays confirmed the results of the radioreceptor assays. It is concluded that mutations of Tyr27 preferentially decrease binding to the type 1 IGF receptor and of Phe48 to the type 2 IGF receptor, either by the loss of a residue involved in receptor binding or by preferentially destabilizing the region involved in receptor binding.  相似文献   

6.
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) either inhibit or enhance IGF-stimulated cellular effects. While inhibition occurs by sequestration of IGF from cell-surface receptors, the exact mechanism of IGF-enhancement remains undefined. Human osteoblast-like bone cells in culture secrete several IGF-binding proteins, one of which we have previously identified as IGFBP-5. In this study we purified a 23-kDa IGFBP-5 from cultures of human osteoblast-like cells using ligand affinity chromatography and reversed-phase high performance liquid chromatography and tested its bioactivity in serum-free cultures of normal mouse osteoblast-like cells. Binding studies with radioiodinated IGF showed similar and relatively low affinities for IGF-I and IGF-II consistent with a carboxyl truncated IGF-binding protein. Mitogenic assays demonstrated that the binding protein, when coincubated with IGF-I or -II, enhanced mitogenesis. This enhancement was unique from other binding proteins in not requiring a preincubation period or serum co-factors. Furthermore, the osteoblast-derived IGFBP-5 stimulated mitogenesis in the absence of exogenous or endogenous IGF. Using radioiodinated IGFBP-5 we found that the binding protein could associate with the osteoblast surface, an effect which did not require IGF nor an interaction with IGF receptors. We suggest that osteoblast-derived IGFBP-5 may stimulate osteoblast mitogenesis in at least two ways, by association with IGF and by a second pathway that is independent of IGF receptor activation.  相似文献   

7.
Five mutants of recombinant insulin-like growth factor-II (rIGF-II) that bound with high affinity to either the IGF-II/cation-independent mannose 6-phosphate (IGF-II/CIM6-P) or the IGF-I receptor were prepared by site-directed mutagenic procedures, expressed as fusion proteins in the larva of Bombyx mori or Escherichia coli, purified to homogeneity, renatured, and characterized in terms of their receptor binding affinities and specificities as well as their biological activities. Class I mutants in which Phe26, Tyr27, and Val43 were substituted with Ser, Leu, and Leu, respectively, bound to enriched preparations of rat placental IGF-II/CIM6-P receptors with apparent equilibrium dissociation constants (Kd(app)) that were only slightly greater, i.e. 0.10, 0.05, and 0.06 nM, than that of rIGF-II (0.04 nM) or hIGF-II (0.03 nM). In contrast, replacing Phe26 with Ser resulted in 5- and 20-fold decreases in the affinities of this mutant for highly purified human placental IGF-I and insulin receptors, respectively. The affinities of the two other Class I mutants, [Leu27]- and [Leu43]rIGF-IIs, for these two receptors were reduced 80- to 220-fold. The affinities of Class II mutants, i.e. [Thr48,Ser49,Ile50]- and [Arg54,Arg55] rIGF-IIs, for IGF-I receptors were as potent as rIGF-II; however, they bound very poorly or not at all to the IGF-II/CIM6-P receptor. In the binding study of those mutant rIGF-IIs, IGF-II was observed to have an unexpectedly high affinity for pure human placental insulin receptor preparations. For example, the affinities of hIGF-II, rIGF-II, and two Class II rIGF-II mutants for the insulin receptor were only 3-, 9-, and 5-fold less, respectively, than that of porcine insulin. In two biological assay systems, i.e. the stimulation of DNA synthesis in Balb/c 3T3 cells and glycogen synthesis in HepG2 cells, the Kd(app) of the rIGF-II mutants for the IGF-I receptor but not the IGF-II/CIM6-P receptor correlated with their abilities to produce biological responses.  相似文献   

8.
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.  相似文献   

9.
The biological activity of IGF-I and -II is controlled by six binding proteins (IGFBPs), preventing the IGFs from interacting with the IGF receptor. Proteolytic cleavage of IGFBPs is one mechanism by which IGF can be released to bind the receptor. The IGFBPs are usually studied individually, although the presence of more than one of the IGFBPs in most tissues suggests a cooperative function. Thus, the IGFBPs are part of regulatory networks with proteolytic enzymes in one end and the IGF receptor in the other end. We have established a model system that allows analysis of the dynamics between IGF, IGFBP-4 and -5, the IGF receptor, and the proteolytic enzyme PAPP-A, which specifically cleaves both IGFBP-4 and -5. We demonstrate different mechanisms of IGF release from IGFBP-4 and -5: cooperative binding to IGF is observed for the proteolytic fragments of IGFBP-5, but not fragments of IGFBP-4. Furthermore, we find that PAPP-A-mediated IGF-dependent cleavage of IGFBP-4 is inhibited by IGFBP-5, which sequesters IGF from IGFBP-4, and that cleavage of both IGFBP-4 and -5 is required for the release of bioactive IGF. Finally, we show that cell surface-localized proteolysis of IGFBP-4 represents the final regulatory step of efficient IGF delivery to the receptor. Our data define a regulatory system in which molar ratios between the IGFBPs and IGF and between the different IGFBPs, sequential proteolytic cleavage of the IGFBPs, and surface association of the activating proteinase are key elements in the regulation of IGF receptor stimulation.  相似文献   

10.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

11.
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) carries out multiple regulatory and transport functions, and disruption of IGF2R function has been implicated as a mechanism to increase cell proliferation. Several missense IGF2R mutations have been identified in human cancers, including the following amino acid substitutions occurring in the extracytoplasmic domain of the receptor: Cys-1262 --> Ser, Gln-1445 --> His, Gly-1449 --> Val, Gly-1464 --> Glu, and Ile-1572 --> Thr. To determine what effects these mutations have on IGF2R function, mutant and wild-type FLAG epitope-tagged IGF2R constructs lacking the transmembrane and cytoplasmic domains were characterized for binding of insulin-like growth factor (IGF)-II and a mannose 6-phosphate-bearing pseudoglycoprotein termed PMP-BSA (where PMP is pentamannose phosphate and BSA is bovine serum albumin). The Ile-1572 --> Thr mutation eliminated IGF-II binding while not affecting PMP-BSA binding. Gly-1449 --> Val and Cys-1262 --> Ser each showed 30-60% decreases in the number of sites available to bind both (125)I-IGF-II and (125)I-PMP-BSA. In addition, the Gln-1445 --> His mutant underwent a time-dependent loss of IGF-II binding, but not PMP-BSA binding, that was not observed for wild type. In all, four of the five cancer-associated mutants analyzed demonstrated altered ligand binding, providing further evidence that loss of IGF2R function is characteristic of certain cancers.  相似文献   

12.
In the absence of a complete tertiary structure to define the molecular basis of the high affinity binding interaction between insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), we have investigated binding of IGFs by discrete amino-terminal domains (amino acid residues 1-93, 1-104, 1-132, and 1-185) and carboxyl-terminal domains (amino acid residues 96-279, 136-279, and 182-284) of bovine IGFBP-2 (bIGFBP-2). Both halves of bIGFBP-2 bound IGF-I and IGF-II in BIAcore studies, albeit with different affinities ((1-132)IGFBP-2, K(D) = 36.3 and 51.8 nm; (136-279)IGFBP-2HIS, K(D) = 23.8 and 16.3 nm, respectively). The amino-terminal half appears to contain components responsible for fast association. In contrast, IGF binding by the carboxyl-terminal fragment results in a more stable complex as reflected by its K(D). Furthermore, des(1-3)IGF-I and des(1-6)IGF-II exhibited reduced binding affinity to (1-279)IGFBP-2HIS, (1-132)IGFBP-2, and (136-279)IGFBP-2HIS biosensor surfaces compared with wild-type IGF. A charge reversal at positions 3 and 6 of IGF-I and IGF-II, respectively, affects binding interactions with the amino-terminal fragment and full-length bIGFBP-2 but not the carboxyl-terminal fragment.  相似文献   

13.
We have used a murine proximal tubule cell line (MCT cells) to determine the presence and binding characteristics of insulin and IGF1 receptors and to correlate these parameters with the concentration-response relationships for ligand-induced cellular proliferation. Separate insulin and IGF1 receptors were identified by equilibrium binding assays. Half-maximal displacement of either peptide occurred at 3-10 nM; crossover binding to the alternate receptor occurred with a 10- to 100-fold lower affinity. Peptide effects on cellular proliferation were determined by measuring [3H]thymidine incorporation. Both insulin and IGF1 stimulate thymidine incorporation in a dose-dependent manner with similar increases above the basal level. The estimated half-maximal stimulation (EC50) occurred at 4 nM for IGF1 and 8 nM for insulin. A comparison of the receptor binding affinities with the dose-response relationships for [3H]thymidine incorporation reveals that each growth factor appears to be exerting its effect via binding to its own receptor. Therefore, in this cell line, physiologic concentrations of either insulin or IGF1 can modulate cellular growth. To our knowledge this is the first demonstration of a mitogenic effect which may be modulated by ligand binding to the insulin receptor in proximal tubule epithelia.  相似文献   

14.
A variety of human cell types, including human osteoblasts (hOBs), produce an IGFBP-4 protease, which cleaves IGFBP-4 in the presence of IGF-II. Recently, the pregnancy-associated plasma protein (PAPP)-A has been determined to be the IGF-II-dependent IGFBP-4 protease produced by human fibroblasts. This study sought to define the mechanism by which IGF-II enhances IGFBP-4 proteolysis. Addition of PAPP-A antibody blocked the IGFBP-4 proteolytic activity in hOB conditioned medium (CM), suggesting that PAPP-A is the major IGFBP-4 protease in hOB CM. Pre-incubation of IGFBP-4 with IGF-II, followed by removal of unbound IGF-II, led to IGFBP-4 proteolysis without further requirement of the presence of IGF-II in the reaction. In contrast, prior incubation of the partially purified IGFBP-4 protease from either hOB CM or human pregnancy serum with IGF-II did not lead to IGFBP-4 proteolysis unless IGF-II was re-added to the assays. To further confirm that the interaction between IGF-II and IGFBP-4 is required for IGFBP-4 protease activity, we prepared IGFBP-4 mutants, which contained the intact cleavage site (Met135-Lys136) but lacked the IGF binding activity, by deleting the residues Leu72-His74 in the IGF binding domain or Cys183-Glu237 that contained an IGF binding enhancing motif. The IGFBP-4 protease was unable to cleave these IGFBP-4 mutants, regardless of whether or not IGF-II was present in the assay. Conversely, an IGFBP-4 mutant with His74 replaced by an Ala, which exhibited normal IGF binding activity, was effectively cleaved in the presence of IGF-II. Taken together, these findings provided strong evidence that the interaction between IGF-II and IGFBP-4, rather than the direct interaction between IGF-II and IGFBP-4 protease, is required for optimal IGFBP-4 proteolysis.  相似文献   

15.
The Type-2 insulin-like growth factor receptor (IGF2R) mediates the transport of lysosomal hydrolases to lysosomes and the clearance of insulin-like growth factor II (IGF-II). Mutant mice lacking IGF2R usually die perinatally, but are completely rescued from lethality in the absence of IGF-II. IGF2R/IGF-II-deficient mice have elevated levels of circulating IGF binding protein (IGFBP)-3 and show a strong IGFBP-6 immunoreactivity in all pancreatic islet cells and in secretory granules of different size in acinar cells and interlobular connective tissue of exocrine pancreas. Fibroblasts derived from double mutant mice missort the lysosomal protease cathepsin D, and are able to degrade endocytosed (125I)IGFBP-3 intracellularly, however, with lower efficiency than in control cells. These results show that the deficiency of IGF2R and IGF-II affects the expression and metabolism of IGFBPs in a tissue- and cell type-specific manner.  相似文献   

16.
In an attempt to define domains in insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1) that are involved in IGF binding, we subjected the carboxyl end of the coding region of IGFBP-1 cDNA to mutagenesis. Mutant cDNAs were isolated, characterized by sequencing, and cloned in an expression vector under control of the simian virus-40 (SV40) early promoter. The constructs were transfected into COS-1 cells, and the mutant proteins, secreted into the culture medium, were analyzed for IGF binding by ligand blotting. The results obtained show that deletion of the C-terminal 20 amino acids or introduction of frame-shifts in this region resulted in loss of IGF binding and for some mutants in the formation of dimeric IGFBP-1 molecules. These dimers are probably formed when cysteine-226 (Cys-226) is missing, and its putative partner is able to form intermolecular disulfide bonds. Site-directed mutagenesis demonstrated that most of the introduced point mutations in the C-terminal region did not affect IGF binding. Only mutation of Cys-226 to tyrosine completely abolished IGF binding, as did the introduction of a negatively charged amino acid in the vicinity of this residue. Again, dimers were observed, supporting that Cys-226 is essential for the conformation of IGFBP-1. In addition, our data suggest that an IGF-binding domain may be located in the vicinity of the intramolecular disulfide bond formed by Cys-226 and its putative partner.  相似文献   

17.
Human intestinal smooth muscle in culture produces insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3, IGFBP-4, and IGFBP-5, which modulate the effects of IGF-I. This study examined the regulation of IGFBP production by endogenous IGF-I. R3-IGF-I, an agonist unaffected by IGFBPs, elicited concentration-dependent increase in growth, measured by [(3)H]thymidine incorporation, and production of IGFBP-3, IGFBP-4, and IGFBP-5, measured by Western blot. Antagonists of the IGF-I receptor, IGF-I Analog or monoclonal antibody 1H7, elicited concentration-dependent inhibition of growth and decrease in IGFBP-3, IGFBP-4, and IGFBP-5 production, implying that endogenous IGF-I stimulated growth and IGFBP production. R3-IGF-I-induced increase in IGFBP-3, IGFBP-4, and IGFBP-5 production was partially inhibited by a mitogen-activated protein (MAP) kinase or a phosphatidylinositol-3-kinase (PI 3-kinase) inhibitor and abolished by the combination. We conclude that endogenous IGF-I stimulates growth and IGFBP-3, IGFBP-4, and IGFBP-5 production in human intestinal smooth muscle cells. Regulation of IGFBP production by IGF-I is mediated by activation of distinct MAP kinase and PI 3-kinase pathways, the same pathways through which IGF-I stimulates growth.  相似文献   

18.

Background

Insulin-like growth factor binding protein (IGFBP)-5 levels are increased in systemic sclerosis (SSc) skin and lung. We previously reported that IGFBP-5 is a pro-fibrotic factor that induces extracellular matrix (ECM) production and deposition. Since IGFBP-5 contains a nuclear localization signal (NLS) that facilitates its nuclear translocation, we sought to examine the role of nuclear translocation on the fibrotic activity of IGFBP-5 and identify IGFBP-5 binding partners relevant for its nuclear compartmentalization.

Methods

We generated functional wild type IGFBP-5 and IGFBP-5 with a mutated NLS or a mutated IGF binding site. Abrogation of nuclear translocation in the NLS mutant was confirmed using immunofluorescence and immunoblotting of nuclear and cytoplasmic cellular extracts. Abrogation of IGF binding was confirmed using western ligand blot. The fibrotic activity of wild type and mutant IGFBP-5 was examined in vitro in primary human fibroblasts and ex vivo in human skin. We identified IGFBP-5 binding partners using immunoprecipitation and mass spectrometry. We examined the effect of nucleolin on IGFBP-5 localization and function via sequence-specific silencing in primary human fibroblasts.

Results

Our results show that IGFBP-5-induced ECM production in vitro in primary human fibroblasts is independent of its nuclear translocation. The NLS-mutant also induced fibrosis ex vivo in human skin, thus confirming and extending the in vitro findings. Similar findings were obtained with the IGF-binding mutant. Nucleolin, a nucleolar protein that can serve as a nuclear receptor, was identified as an IGFBP-5 binding partner. Silencing nucleolin reduced IGFBP-5 translocation to the nucleus but did not block the ability of IGFBP-5 to induce ECM production and a fibrotic phenotype.

Conclusions

IGFBP-5 transport to the nucleus requires an intact NLS and nucleolin. However, nuclear translocation is not necessary for IGFBP-5 fibrotic activity; neither is IGF binding. Our data provide further insights into the role of cellular compartmentalization in IGFBP-5-induced fibrosis.  相似文献   

19.
To better define the biologic function of the type II insulin-like growth factor (IGF) receptor, we raised a blocking antiserum in a rabbit by immunizing with highly purified rat type II IGF receptor. On immunoblots of crude type II receptor preparations, only bands corresponding to the type II IGF receptor were seen with IgG 3637, indicating that the antiserum was specific for the type II receptor. Competitive binding and chemical cross-linking experiments showed that IgG 3637 blocked binding of 125I-IGF-II to the rat type II IGF receptor, but did not block binding of 125I-IGF-I to the type I IGF receptor, nor did IgG 3637 block binding of 125I-insulin to the insulin receptor. In addition, IgG 3637 did not inhibit the binding of 125I-IGF-II to partially purified 150- and 40-kDa IGF carrier proteins from adult and fetal rat serum. L6 myoblasts have both type I and type II IGF receptors. IGF-I was more potent than IGF-II in stimulating N-methyl-alpha-[14C]aminoisobutyric acid uptake, 2-[3H]deoxyglucose uptake, and [3H]leucine incorporation into cellular proteins. IgG 3637 did not stimulate either 2-[3H]deoxyglucose uptake, N-methyl-alpha-[14C]aminoisobutyric acid uptake, or [3H]leucine incorporation into protein when tested alone. Furthermore, IgG 3637 at concentrations sufficient to block type II receptors under conditions of the uptake and incorporation experiments did not cause a shift to the right of the dose-response curve for stimulation of these biologic functions by IGF-II. We conclude that the type II IGF receptor does not mediate IGF stimulation of N-methyl-alpha-[14C]aminoisobutyric acid and 2-[3H]deoxyglucose uptake and protein synthesis in L6 myoblasts; presumably, the type I receptor mediates these biologic responses. The anti-type II receptor antibody inhibited IGF-II degradation in the media by greater than 90%, suggesting that the major degradative pathway for IGF-II in L6 myoblasts utilizes the type II IGF receptor.  相似文献   

20.
Abstract

We have identified one class of IGF-I-binding sites and two classes of IGF-II-binding sites at the surface of the melanoma cell line IGR39. By means of affinity labeling with 125I-IGF-I, a 290–300 kDa form was characterized. Using 125I-IGF-II, a 270 kDa polypeptide was labeled, corresponding to the type II IGF receptor. In the two serials of experiments, the order of potency in inhibiting 125I-IGF-I or 125I-IGF-II labeling of IGF-related peptides and αIR3, an antibody directed against type I receptor α subunit, was the same as in competition experiments. When IGR39 cells were cultured in a serum-free medium, the number of both high affinity IGF-II and IGF-I binding sites was increased, by 8-and 5-fold respectively, without any significant change in Kd values. In both culture conditions, we found IGFBP-2, -3, -4 and a 30 kDa form which Mr was consistent with IGFBP-5 or -6. Except for IGFBP-2, the amount of secreted IGFBPs was modified depending on culture conditions: in conditioned medium from cells cultured with 10% FCS, the amount of IGFBP-3 or -4 was higher, and the amount of the 30 kDa IGFBP was lower when compared to conditioned medium from cells cultured in serum-free medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号