首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human internal exons have an average size of 147 nt, and most are <300 nt. This small size is thought to facilitate exon definition. A small number of large internal exons have been identified and shown to be alternatively spliced. We identified 1115 internal exons >1000 nt in the human genome; these were found in 5% of all protein-coding genes, and most were expressed and translated. Surprisingly, 40% of these were expressed at levels similar to the flanking exons, suggesting they were constitutively spliced. While all of the large exons had strong splice sites, the constitutively spliced large exons had a higher ratio of splicing enhancers/silencers and were more conserved across mammals than the alternatively spliced large exons. We asked if large exons contain specific sequences that promote splicing and identified 38 sequences enriched in the large exons relative to small exons. The consensus sequence is C-rich with a central invariant CA dinucleotide. Mutation of these sequences in a candidate large exon indicated that these are important for recognition of large exons by the splicing machinery. We propose that these sequences are large exon splicing enhancers (LESEs).  相似文献   

3.
Alternative splicing is a well-recognized mechanism of accelerated genome evolution. We have studied single-nucleotide polymorphisms and human-chimpanzee divergence in the exons of 6672 alternatively spliced human genes, with the aim of understanding the forces driving the evolution of alternatively spliced sequences. Here, we show that alternatively spliced exons and exon fragments (alternative exons) from minor isoforms experience lower selective pressure at the amino acid level, accompanied by selection against synonymous sequence variation. The results of the McDonald-Kreitman test suggest that alternatively spliced exons, unlike exons constitutively included in the mRNA, are also subject to positive selection, with up to 27% of amino acids fixed by positive selection.  相似文献   

4.
Alternative splicing is an important regulatory mechanism to create protein diversity. In order to elucidate possible regulatory elements common to neuron specific exons, we created and statistically analysed a database of exons that are alternatively spliced in neurons. The splice site comparison of alternatively and constitutively spliced exons reveals that some, but not all alternatively spliced exons have splice sites deviating from the consensus sequence, implying diverse patterns of regulation. The deviation from the consensus is most evident at the -3 position of the 3' splice site and the +4 and -3 position of the 5' splice site. The nucleotide composition of alternatively and constitutively spliced exons is different, with alternatively spliced exons being more AU rich. We performed overlapping k-tuple analysis to identify common motifs. We found that alternatively and constitutively spliced exons differ in the frequency of several trinucleotides that cannot be explained by the amino acid composition and may be important for splicing regulation.  相似文献   

5.
The structure of the human synapsin I gene and protein   总被引:6,自引:0,他引:6  
  相似文献   

6.
7.
8.
Goren A  Ram O  Amit M  Keren H  Lev-Maor G  Vig I  Pupko T  Ast G 《Molecular cell》2006,22(6):769-781
Exonic splicing regulatory sequences (ESRs) are cis-acting factor binding sites that regulate constitutive and alternative splicing. A computational method based on the conservation level of wobble positions and the overabundance of sequence motifs between 46,103 human and mouse orthologous exons was developed, identifying 285 putative ESRs. Alternatively spliced exons that are either short in length or contain weak splice sites show the highest conservation level of those ESRs, especially toward the edges of exons. ESRs that are abundant in those subgroups show a different distribution between constitutively and alternatively spliced exons. Representatives of these ESRs and two SR protein binding sites were shown, experimentally, to display variable regulatory effects on alternative splicing, depending on their relative locations in the exon. This finding signifies the delicate positional effect of ESRs on alternative splicing regulation.  相似文献   

9.
10.
Genetic programming (GP) can be used to classify a given gene sequence as either constitutively or alternatively spliced. We describe the principles of GP and apply it to a well-defined data set of alternatively spliced genes. A feature matrix of sequence properties, such as nucleotide composition or exon length, was passed to the GP system "Discipulus." To test its performance we concentrated on cassette exons (SCE) and retained introns (SIR). We analyzed 27,519 constitutively spliced and 9641 cassette exons including their neighboring introns; in addition we analyzed 33,316 constitutively spliced introns compared to 2712 retained introns. We find that the classifier yields highly accurate predictions on the SIR data with a sensitivity of 92.1% and a specificity of 79.2%. Prediction accuracies on the SCE data are lower, 47.3% (sensitivity) and 70.9% (specificity), indicating that alternative splicing of introns can be better captured by sequence properties than that of exons.  相似文献   

11.
12.
13.
14.
MOTIVATION: While the mechanism for regulating alternative splicing is poorly understood, secondary structure has been shown to be integral to this process. Due to their propensity for forming complementary hairpin loops and their elevated mutation rates, tandem repeated sequences have the potential to influence splicing regulation. RESULTS: An analysis of human intronic sequences reveals a strong correlation between alternative splicing and the prevalence of mono- through hexanucleotide tandem repeats that may engage in complementary pairing in introns that flank alternatively spliced exons. While only 44% of the 18 173 genes in the Human Alternative Splicing Database are known to be alternatively spliced, they contain 84% of the 694 237 intronic complementary repeat pairs. Significantly, the normalized frequency and distribution of repeat sequences, independent of their potential for pairing, are indistinguishable between alternatively spliced and non-alternatively spliced genes. Thus, the increased prevalence of repeats with pairing potential in alternatively spliced genes is not merely a consequence of more repeats or repeat composition bias. These results suggest that complementary repeats may play a role in the regulation of alternative splicing. CONTACT: harold.garner@utsouthwestern.edu.  相似文献   

15.
16.
17.
CD45, encoded by PTPRC in humans, is the most abundantly expressed protein on the surface of many lymphocytes. We investigated whether the extracellular region of CD45 was under positive selection in Old World primates, and whether there was differential selection across this region, particularly on exons that were involved in alternative splicing and those that were not alternatively spliced. The results show extraordinarily strong and consistent positive Darwinian selection on the extracellular part of CD45 throughout the evolution of Old World monkeys, apes and humans. Positive selection is concentrated in exons 9 and 14, which code for the previously neglected linker and fibronectin III domains. These exons have a high rate of evolution at nonsynonymous sites that is roughly twice as high as that of the intronic rate in this gene. In contrast, alternatively spliced exons 4-6, which code for the variable domains, are under weaker positive selection and are evolving more slowly than the intronic rate. These data provide a striking example of positive selection in a well-known gene that should provide an impetus for further functional studies to elucidate its species-specific function.  相似文献   

18.
We elucidated the structure and alternative splicing patterns of the rat cystathionine beta-synthase gene. The gene is 20-25 kilobase pairs long, and its coding region is divided into 17 exons. These are alternatively spliced, forming four distinct mRNAs (types I through IV). The predicted open reading frames encode proteins of 61.5, 39, 60, and 52.5 kDa, respectively. Exons 13 and 16 are used alternatively and mutually exclusively. Exon 13 includes a stop codon and encodes the unique carboxyl-terminal sequence found in types II and IV. Exon 16 is present only in type I. Types I and III, which differ by 42 nucleotides (exon 16), are the predominant synthase mRNA forms in rat liver. Seventeen arginine peptides from pure liver synthase matched the deduced amino acid sequences of types I and III. These two polypeptides are detectable in liver extracts; each exhibits enzymatic activity when expressed in transfected Chinese hamster cells. Synthase shows substantial sequence similarity with pyridoxal 5'-phosphate dependent enzymes from lower organisms. Similarity of synthase to Escherichia coli O-acetylserine (thiol)-lyase (cysK) is 52%; E. coli tryptophan synthase beta chain (trpB), 36%; yeast serine deaminase, 33%. Lysine 116 in synthase aligns with the established pyridoxyllysine residue of these enzymes suggesting that it is the pyridoxal 5'-phosphate binding residue.  相似文献   

19.
We have isolated two cDNA clones encoding human acidic fibroblast growth factor (aFGF) which represent the utilization of alternative upstream exons in aFGF mRNA. Isolation and sequence analysis of genomic clones spanning the first coding exon and each of the upstream sequences confirms that the divergent 5' sequences are separate exons, spliced alternatively to the first coding exon 34 nucleotides upstream of the initiator AUG codon. Restriction mapping of the genomic clones provides a minimum size estimate of 45 kilobase pairs for the aFGF locus.  相似文献   

20.
Exonic splicing enhancers (ESEs) are pre-mRNA cis-acting elements required for splice-site recognition. We previously developed a web-based program called ESEfinder that scores any sequence for the presence of ESE motifs recognized by the human SR proteins SF2/ASF, SRp40, SRp55 and SC35 (http://rulai.cshl.edu/tools/ESE/). Using ESEfinder, we have undertaken a large-scale analysis of ESE motif distribution in human protein-coding genes. Significantly higher frequencies of ESE motifs were observed in constitutive internal protein-coding exons, compared with both their flanking intronic regions and with pseudo exons. Statistical analysis of ESE motif frequency distributions revealed a complex relationship between splice-site strength and increased or decreased frequencies of particular SR protein motifs. Comparison of constitutively and alternatively spliced exons demonstrated slightly weaker splice-site scores, as well as significantly fewer ESE motifs, in the alternatively spliced group. Our results underline the importance of ESE-mediated SR protein function in the process of exon definition, in the context of both constitutive splicing and regulated alternative splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号