首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of the 2-nitroimidazole Ro 15-0216 upon the interaction between purified topoisomerase II and its DNA substrate was investigated. The cleavage reaction in the presence of this DNA-nonintercalative drug took place with the hallmarks of a regular topoisomerase II mediated cleavage reaction, including covalent linkage of the enzyme to the cleaved DNA. In the presence of Ro 15-0216, topoisomerase II mediated cleavage was extensively stimulated at major cleavage sites of which only one existed in the 4363 base pair pBR322 molecule. The sites stimulated by Ro 15-0216 shared a pronounced sequence homology, indicating that a specific nucleotide sequence is crucial for the action of this drug. The effect of Ro 15-0216 thus differs from that of the clinically important topoisomerase II targeted agents such as mAMSA, VM26, and VP16, which enhance enzyme-mediated cleavage at a multiple number of sites. In contrast to the previous described drugs, Ro 15-0216 did not exert any inhibitory effect on the enzyme's catalytic activity. This observation might be ascribed to the low stability of the cleavage complexes formed in the presence of Ro 15-0216 as compared to the stability of the ones formed in the presence of traditional topoisomerase II targeted drugs.  相似文献   

3.
McClendon AK  Osheroff N 《Biochemistry》2006,45(9):3040-3050
Collisions with DNA tracking systems are critical for the conversion of transient topoisomerase-DNA cleavage complexes to permanent strand breaks. Since DNA is overwound ahead of tracking systems, cleavage complexes most likely to produce permanent strand breaks should be formed between topoisomerases and positively supercoiled molecules. Therefore, the ability of human topoisomerase IIalpha and IIbeta and topoisomerase I to cleave positively supercoiled DNA was assessed in the absence or presence of anticancer drugs. Topoisomerase IIalpha and IIbeta maintained approximately 4-fold lower levels of cleavage complexes with positively rather than negatively supercoiled DNA. Topoisomerase IIalpha also displayed lower levels of cleavage with overwound substrates in the presence of nonintercalative drugs. Decreased drug efficacy was due primarily to a drop in baseline (i.e., nondrug) cleavage, rather than an altered interaction with the enzyme-DNA complex. Similar results were seen for topoisomerase IIbeta, but the effects of DNA geometry on drug-induced scission were somewhat less pronounced. With both topoisomerase IIalpha and IIbeta, intercalative drugs displayed greater relative cleavage enhancement with positively supercoiled DNA. This appeared to result from negative effects of high concentrations of intercalative agents on underwound DNA. In contrast to the type II enzymes, topoisomerase I maintained approximately 3-fold higher levels of cleavage complexes with positively supercoiled substrates and displayed an even more dramatic increase in the presence of camptothecin. These findings suggest that the geometry of DNA supercoils has a profound influence on topoisomerase-mediated DNA scission and that topoisomerase I may be an intrinsically more lethal target for anticancer drugs than either topoisomerase IIalpha or IIbeta.  相似文献   

4.
M J Robinson  N Osheroff 《Biochemistry》1990,29(10):2511-2515
In order to elucidate the mechanism by which the intercalative antineoplastic drug 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) stabilizes the covalent topoisomerase II-DNA cleavage complex, the effect of the drug on the DNA cleavage/religation reaction of the type II enzyme from Drosophila melanogaster was examined. At a concentration of 60 microM, m-AMSA enhanced topoisomerase II mediated double-stranded DNA breakage approximately 5-fold. Drug-induced stabilization of the enzyme-DNA cleavage complex was readily reversed by the addition of EDTA or salt. When a DNA religation assay was utilized, m-AMSA was found to inhibit the topoisomerase II mediated rejoining of cleaved DNA approximately 3.5-fold. This result is similar to that previously reported for the effects of etoposide on the activity of the Drosophila enzyme [Osheroff, N. (1989) Biochemistry 28, 6157-6160]. Thus, it appears that structurally disparate classes of topoisomerase II targeted antineoplastic drugs stabilize the enzyme's DNA cleavage complex primarily by interfering with the ability of topoisomerase II to religate DNA.  相似文献   

5.
Many intercalative antitumor drugs have been shown to induce reversible protein-linked DNA breaks in cultured mammalian cells. Using purified mammalian DNA topoisomerase II, we have demonstrated that the antitumor drugs ellipticine and 2-methyl-9-hydroxyellipticine (2-Me-9-OH-E+) can produce reversible protein-linked DNA breaks in vitro. 2-Me-9-OH-E+ which is more cytotoxic toward L1210 cells and more active against experimental tumors than ellipticine is also more effective in stimulating DNA cleavage in vitro. Similar to the effect of 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) on topoisomerase II in vitro, the mechanism of DNA breakage induced by ellipticines is most likely due to the drug stabilization of a cleavable complex formed between topoisomerase II and DNA. Protein denaturant treatment of the cleavable complex results in DNA breakage and covalent linking of one topoisomerase II subunit to each 5'-end of the cleaved DNA. Cleavage sites on pBR322 DNA produced by ellipticine or 2-Me-9-OH-E+ treatment mapped at the same positions. However, many of these cleavage sites are distinctly different from those produced by the antitumor drug m-AMSA which also targets at topoisomerase II. Our results thus suggest that although mammalian DNA topoisomerase II may be a common target of these antitumor drugs, drug-DNA-topoisomerase interactions for different antitumor drugs may be different.  相似文献   

6.
Cloning and sequencing of cDNA segments of human TOP2 gene encoding the 170 kDa form of human DNA topoisomerase II show that Arg486 of the enzyme has been mutated to a lysine in the enzyme from two human leukemia cell lines HL-60/AMSA and KBM-3/AMSA, which were independently selected for resistance to the antitumor drug amsacrine (4'-[9-acridinylamino]-methanesulfon-m-anisidide, mAMSA). Sequence identity comparisons between eukaryotic DNA topoisomerase II and bacterial gyrase (bacterial DNA topoisomerase II) indicate that the position of the common mutation observed in mAMSA-resistant human TOP2 corresponds to that of the point mutation nal-31 in the Escherichia coli gyrase B gene, which confers resistance to nalidixic acid. Because mAMSA and nalidixic acid are known to act on their respective targets by a common mechanism of trapping the covalent enzyme-DNA intermediates, these results provide strong evidence that the 170 kDa form of human DNA topoisomerase II is a major cellular target of mAMSA, and that Arg486 of this enzyme is involved in mAMSA-mediated trapping of the covalent enzyme-DNA complex.  相似文献   

7.
Methods of uncoupling the DNA binding, cleavage and religation reactions of topoisomerase II were employed to investigate the influence of topoisomerase II-directed drugs on the individual steps in the enzyme's catalytic cycle. A special DNA substrate containing a major topoisomerase II interaction site, which can be cleaved by the enzyme in the absence of any concomitant religation, was used to examine the effect of topoisomerase II-directed agents upon the DNA cleavage reaction. The experiment demonstrated that the topoisomerase II targeting agent Ro 15-0216 stimulates the DNA cleavage reaction extensively, whereas the traditional topoisomerase II inhibitor, mAMSA, has only a minor effect on this reaction. Topoisomerase II trapped in the cleavage complexes can religate to the 3' hydroxyl end of another DNA strand. Using this religation assay, it was demonstrated that the major effect of mAMSA is an inhibition of the enzyme's religation reaction, whereas Ro 15-0216 has no effect on this reaction. Recently, considerable attention has been given to drugs preventing topoisomerase II from introducing DNA cleavages. In the present paper the initial non-covalent DNA binding reaction of topoisomerase II was investigated under conditions excluding enzyme-mediated DNA cleavage. This demonstrated that the anthracycline, aclarubicin, prevents topoisomerase II from performing its initial non-covalent DNA binding reaction and thereby abolishes the DNA cleavage reaction of the enzyme. The results presented here demonstrate that profound differences exist in the mode of action of different agents targeting topoisomerase II, and that the enzyme can be affected by such agents at both its DNA binding, cleavage and religation subreactions.  相似文献   

8.
9.
Chromosomal breakage resulting from stabilization of DNA topoisomerase II covalent complexes by epipodophyllotoxins may play a role in the genesis of leukemia-associated MLL gene translocations. We investigated whether etoposide catechol and quinone metabolites can damage the MLL breakpoint cluster region in a DNA topoisomerase II-dependent manner like the parent drug and the nature of the damage. Cleavage of two DNA substrates containing the normal homologues of five MLL intron 6 translocation breakpoints was examined in vitro upon incubation with human DNA topoisomerase IIalpha, ATP, and either etoposide, etoposide catechol, or etoposide quinone. Many of the same cleavage sites were induced by etoposide and by its metabolites, but several unique sites were induced by the metabolites. There was a preference for G(-1) among the unique sites, which differs from the parent drug. Cleavage at most sites was greater and more heat-stable in the presence of the metabolites compared to etoposide. The MLL translocation breakpoints contained within the substrates were near strong and/or stable cleavage sites. The metabolites induced more cleavage than etoposide at the same sites within a 40 bp double-stranded oligonucleotide containing two of the translocation breakpoints, confirming the results at a subset of the sites. Cleavage assays using the same oligonucleotide substrate in which guanines at several positions were replaced with N7-deaza guanines indicated that the N7 position of guanine is important in metabolite-induced cleavage, possibly suggesting N7-guanine alkylation by etoposide quinone. Not only etoposide, but also its metabolites, enhance DNA topoisomerase II cleavage near MLL translocation breakpoints in in vitro assays. It is possible that etoposide metabolites may be relevant to translocations.  相似文献   

10.
TAS-103 is a novel antineoplastic agent that is active against in vivo tumor models [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. This drug is believed to be a dual topoisomerase I/II-targeted agent, because it enhances both topoisomerase I- and topoisomerase II-mediated DNA cleavage in treated cells. However, the relative importance of these two enzymes for the cytotoxic actions of TAS-103 is not known. Therefore, the primary cellular target of the drug and its mode of action were determined. TAS-103 stimulated DNA cleavage mediated by mammalian topoisomerase I and human topoisomerase IIalpha and beta in vitro. The drug was less active than camptothecin against the type I enzyme but was equipotent to etoposide against topoisomerase IIalpha. A yeast genetic system that allowed manipulation of topoisomerase activity and drug sensitivity was used to determine the contributions of topoisomerase I and II to drug cytotoxicity. Results indicate that topoisomerase II is the primary cellular target of TAS-103. In addition, TAS-103 binds to human topoisomerase IIalpha in the absence of DNA, suggesting that enzyme-drug interactions play a role in formation of the ternary topoisomerase II.drug.DNA complex. TAS-103 induced topoisomerase II-mediated DNA cleavage at sites similar to those observed in the presence of etoposide. Like etoposide, it enhanced cleavage primarily by inhibiting the religation reaction of the enzyme. Based on these findings, it is suggested that TAS-103 be classified as a topoisomerase II-targeted drug.  相似文献   

11.
Although acetaminophen is the most widely used analgesic in the world, it is also a leading cause of toxic drug overdoses. Beyond normal therapeutic doses, the drug is hepatotoxic and genotoxic. All of the harmful effects of acetaminophen have been attributed to the production of its toxic metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Since many of the cytotoxic/genotoxic events triggered by NAPQI are consistent with the actions of topoisomerase II-targeted drugs, the effects of this metabolite on human topoisomerase IIalpha were examined. NAPQI was a strong topoisomerase II poison and increased levels of enzyme-mediated DNA cleavage >5-fold at 100 microM. The compound induced scission at a number of DNA sites that were similar to those observed in the presence of the topoisomerase II-targeted anticancer drug etoposide; however, the relative site utilization differed. NAPQI strongly impaired the ability of topoisomerase IIalpha to reseal cleaved DNA molecules, suggesting that inhibition of DNA religation is the primary mechanism underlying cleavage enhancement. In addition to its effects in purified systems, NAPQI appeared to increase levels of DNA scission mediated by human topoisomerase IIalpha in cultured CEM leukemia cells. In contrast, acetaminophen did not significantly affect the DNA cleavage activity of the human enzyme in vitro or in cultured CEM cells. Furthermore, the analgesic did not interfere with the actions of etoposide against the type II enzyme. These results suggest that at least some of the cytotoxic/genotoxic effects caused by acetaminophen overdose may be mediated by the actions of NAPQI as a topoisomerase II poison.  相似文献   

12.
The DNA cleavage reaction of topoisomerase II is central to the catalytic activity of the enzyme and is the target for a number of important anticancer drugs. Unfortunately, efforts to characterize this fundamental reaction have been limited by the low levels of DNA breaks normally generated by the enzyme. Recently, however, a type II topoisomerase with an extraordinarily high intrinsic DNA cleavage activity was isolated from Chlorella virus PBCV-1. To further our understanding of this enzyme, the present study characterized the site-specific DNA cleavage reaction of PBCV-1 topoisomerase II. Results indicate that the viral enzyme cleaves DNA at a limited number of sites. The DNA cleavage site utilization of PBCV-1 topoisomerase II is remarkably similar to that of human topoisomerase IIalpha, but the viral enzyme cleaves these sites to a far greater extent. Finally, PBCV-1 topoisomerase II displays a modest sensitivity to anticancer drugs and DNA damage in a site-specific manner. These findings suggest that PBCV-1 topoisomerase II represents a unique model with which to dissect the DNA cleavage reaction of eukaryotic type II topoisomerases.  相似文献   

13.
A Ser740 --> Trp mutation in yeast topoisomerase II (top2) and of the equivalent Ser83 in gyrase results in resistance to quinolones and confers hypersensitivity to etoposide (VP-16). We characterized the cleavage complexes induced by the top2(S740W) in the human c-myc gene. In addition to resistance to the fluoroquinolone CP-115,953, top2(S740W) induced novel DNA cleavage sites in the presence of VP-16, azatoxin, amsacrine, and mitoxantrone. Analysis of the VP-16 sites indicated that the changes in the cleavage pattern were reflected by alterations in base preference. C at position -2 and G at position +6 were observed for the top2(S740W) in addition to the previously reported C-1 and G+5 for the wild-type top2. The VP-16-induced top2(S740W) cleavage complexes were also more stable. The most stable sites had strong preference for C-1, whereas the most reversible sites showed no base preference at positions -1 or -2. Different patterns of DNA cleavage were also observed in the absence of drug and in the presence of calcium. These results indicate that the Ser740 --> Trp mutation alters the DNA recognition of top2, enhances its DNA binding, and markedly affects its interactions with inhibitors. Thus, residue 740 of top2 appears critical for both DNA and drug interactions.  相似文献   

14.
Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin's and non-Hodgkin's lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4'-amino-methanesulfon-m-anisidide headgroup. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3'-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the headgroup in a favorable orientation. Shifting the methoxy to the 2'-position (o-AMSA), which abrogates drug function, appears to increase the degree of rotational freedom of the headgroup and may impair interactions of the 1'-substituent or other portions of the headgroup within the ternary complex. Finally, the nonintercalative m-AMSA headgroup enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the headgroup, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex.  相似文献   

15.
The distributions of DNA cleavage sites induced by topoisomerase II in the presence or absence of specific drugs were mapped in the simian virus 40 genome. The drugs studied were 5-iminodaunorubicin, amsacrine (m-AMSA), teniposide (VM-26) and 2-methyl-9-hydroxyellipticinium; each produced a distinctive pattern of enhanced cleavage. Consistently intense cleavage, both in the presence and in the absence of drugs, occurred in the nuclear matrix-associated region. Since topoisomerase II is a major constituent of the nuclear matrix, and cleavage complexes include a covalent link between topoisomerase II and DNA, the findings suggest that topoisomerase II may function to attach DNA to the nuclear matrix. Cleavage usually occurred on both DNA strands with the expected four base-pair 5' stagger, and strong sites tended to occur within A/T runs such as have been associated with binding to the nuclear scaffold. Intense cleavage was present also in the replication termination region, but was absent from the vicinity of the replication origin. Cleavage intensities were found to change with time in a manner that depended both on the site and on the drug, suggesting that topoisomerase II can move along the DNA from a kinetically preferred site to a thermodynamically preferred site.  相似文献   

16.
DNA topoisomerases II are nuclear enzymes that have been identified recently as targets for some of the most active anticancer drugs. Antitumor topoisomerase II inhibitors such as teniposide (VM-26) produce enzyme-induced DNA cleavage and inhibition of enzyme activity. By adding to such reactions distamycin, a compound whose effects on DNA have been extensively characterized, we investigated the effects of drug binding upon topoisomerase II-mediated DNA cleavage induced by VM-26. We have found a correspondence between distamycin binding (determined by footprinting analysis) and topoisomerase II-mediated cleavage of SV40 DNA (determined by sequencing gel analysis). Distamycin binding potentiated the cleavage of specific sites in the near proximity of distamycin-binding sites (within at least 25 base pairs), which indicates that DNA secondary structure is involved in topoisomerase II-DNA interactions. That distamycin potentiated cleavage only at sites that were recognized in the absence of distamycin and suppressed cleavage directly at distamycin-binding sites indicates that topoisomerase II recognizes DNA on the basis of primary sequence. In addition, distamycin stimulated topoisomerase II-mediated DNA relaxation and antagonized the inhibitory effect of VM-26. These results show that the DNA sequence-specific binding of distamycin produces local and propagated effects in the DNA which markedly affect topoisomerase II activity.  相似文献   

17.
Benzene is a human carcinogen that induces hematopoietic malignancies. It is believed that benzene does not initiate leukemias directly, but rather generates DNA damage through a series of phenolic metabolites, especially 1,4-benzoquinone. The cellular consequences of 1,4-benzoquinone are consistent with those of topoisomerase II-targeted drugs. Therefore, it has been proposed that the compound initiates specific leukemias by acting as a topoisomerase II poison. This hypothesis, however, has not been supported by in vitro studies. While 1,4-benzoquinone has been shown to inhibit topoisomerase II catalysis, increases in enzyme-mediated DNA cleavage have not been reported. Because of the potential involvement of topoisomerase II in benzene-induced leukemias, we re-examined the effects of the compound on DNA cleavage mediated by human topoisomerase IIalpha. In contrast to previous reports, we found that 1,4-benzoquinone was a strong topoisomerase II poison and was more potent in vitro than the anticancer drug etoposide. DNA cleavage enhancement probably was unseen in previous studies due to the presence of reducing agents in reaction buffers and the incubation of 1,4-benzoquinone with the enzyme prior to the addition of DNA. 1,4-Benzoquinone increased topoisomerase II-mediated DNA cleavage primarily by enhancing the forward rate of scission. In vitro, the compound induced cleavage at DNA sites proximal to a defined leukemic chromosomal breakpoint and displayed a sequence specificity that differed from that of etoposide. Finally, 1,4-benzoquinone stimulated DNA cleavage by topoisomerase IIalpha in cultured human cells. The present findings are consistent with the hypothesis that topoisomerase IIalpha plays a role in the initiation of specific leukemias induced by benzene and its metabolites.  相似文献   

18.
Association of tubulinyl-tyrosine carboxypeptidase with microtubules   总被引:3,自引:0,他引:3  
C A Arce  H S Barra 《FEBS letters》1983,157(1):75-78
Evidence is presented that the topoisomerase inhibitors novobiocin and coumermycin inhibit the production of double-strand breaks in mouse mastocytoma cell nuclear DNA by the anticancer drug 4'[(9-acridinyl)amino]-methanesulphon-m-anisidide (mAMSA). Novobiocin did not inhibit resealing of DNA breaks induced by mAMSA. It is suggested that mAMSA intercalation into DNA induces the action of a type II topoisomerase. mAMSA and oAMSA were equally effective in breaking the DNA in isolated nuclei.  相似文献   

19.
A consensus sequence for cleavage by vertebrate DNA topoisomerase II.   总被引:30,自引:13,他引:17       下载免费PDF全文
Topoisomerase II, purified from chicken erythrocytes, was reacted with a large number of different DNA fragments and cleavages were catalogued in the presence and absence of drugs that stabilize the cleavage intermediate. Cleavages were sequenced to derive a consensus for topoisomerase II that predicts catalytic sites. The consensus is: (sequence; see text) where N is any base and cleavage occurs at the indicated mark between -1 and +1. The consensus accurately predicts topoisomerase II sites in vitro. This consensus is not closely related to the Drosophila consensus sequence, but the two enzymes show some similarities in site recognition. Topoisomerase II purified from human placenta cleaves DNA sites that are essentially identical to the chicken enzyme, suggesting that vertebrate type II enzymes share a common catalytic sequence. Both viral and tissue specific enhancers contain sites sharing strong homology to the consensus and endogenous topoisomerase II recognizes some of these sites in vivo.  相似文献   

20.
Bromberg KD  Burgin AB  Osheroff N 《Biochemistry》2003,42(12):3393-3398
Several important antineoplastic drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. These compounds act by two distinct mechanisms. Agents such as etoposide inhibit the ability of topoisomerase II to ligate enzyme-linked DNA breaks. Conversely, compounds such as quinolones have little effect on ligation and are believed to stimulate the forward rate of topoisomerase II-mediated DNA cleavage. The fact that there are two scissile bonds per double-stranded DNA break implies that there are two sites for drug action in every enzyme-DNA cleavage complex. However, since agents in the latter group are believed to act by locally perturbing DNA structure, it is possible that quinolone interactions at a single scissile bond are sufficient to distort both strands of the double helix and generate an enzyme-mediated double-stranded DNA break. Therefore, an oligonucleotide system was established to further define the actions of topoisomerase II-targeted drugs that stimulate the forward rate of DNA cleavage. Results indicate that the presence of the quinolone CP-115,953 at one scissile bond increased the extent of enzyme-mediated scission at the opposite scissile bond and was sufficient to stimulate the formation of a double-stranded DNA break by human topoisomerase IIalpha. These findings stand in marked contrast to those for etoposide, which must be present at both scissile bonds to stabilize a double-stranded DNA break [Bromberg, K. D., et al. (2003) J. Biol. Chem. 278, 7406-7412]. Moreover, they underscore important mechanistic differences between drugs that enhance DNA cleavage and those that inhibit ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号