共查询到20条相似文献,搜索用时 15 毫秒
1.
Irimia M Maeso I Penny D Garcia-Fernàndez J Roy SW 《Molecular biology and evolution》2007,24(8):1604-1607
There is growing interest in the use of alternative, more slowly-evolving RGCs (rare genomic changes). Recently, Rogozin and coauthors (Rogozin et al. 2007) proposed a novel phylogenetic method employing rare amino acid changes, RGC-CAMs (rare genomic changes-conserved amino acids-multiple substitutions). They applied their method to 694 sets of eukaryotic orthologs in order to distinguish the relationship between nematodes, arthropods and deuterostomes. They concluded that such rare amino acid changes were consistent with the Coelomata hypothesis, which groups arthropods and deuterostomes to the exclusion of nematodes. Here we use newly available genomic sequences from Nematostella vectensis, a basal metazoan, and from Brugia malayi, an additional nematode. We show that the apparent support for Coelomata is likely to be the result of the rapid rate of evolution leading to Caenorhabditis nematodes. Including the additional species paints a very different picture, with 13 remaining characters consistent with Ecdysozoa versus only 1 consistent with Coelomata. 相似文献
2.
Kenneth Agerlin Halberg Dennis Persson Nadja Møbjerg Andreas Wanninger Reinhardt Møbjerg Kristensen 《Journal of morphology》2009,270(8):996-1013
The muscular architecture of Halobiotus crispae (Eutardigrada: Hypsibiidae) was examined by means of fluorescent‐coupled phalloidin in combination with confocal laser scanning microscopy and computer‐aided three‐dimensional reconstruction, in addition to light microscopy (Nomarski), scanning electron microscopy, and transmission electron microscopy (TEM). The somatic musculature of H. crispae is composed of structurally independent muscle fibers, which can be divided into a dorsal, ventral, dorsoventral, and a lateral musculature. Moreover, a distinct leg musculature is found. The number and arrangement of muscles differ in each leg. Noticeably, the fourth leg contains much fewer muscles when compared with the other legs. Buccopharyngeal musculature (myoepithelial muscles), intestinal musculature, and cloacal musculature comprise the animal's visceral musculature. TEM of stylet and leg musculature revealed ultrastructural similarities between these two muscle groups. Furthermore, microtubules are found in the epidermal cells of both leg and stylet muscle attachments. This would indicate that the stylet and stylet glands are homologues to the claw and claw glands, respectively. When comparing with previously published data on both heterotardigrade and eutardigrade species, it becomes obvious that eutardigrades possess very similar numbers and arrangement of muscles, yet differ in a number of significant details of their myoanatomy. This study establishes a morphological framework for the use of muscular architecture in elucidating tardigrade phylogeny. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc. 相似文献
3.
Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths) 总被引:1,自引:0,他引:1
Möller-Krull M Delsuc F Churakov G Marker C Superina M Brosius J Douzery EJ Schmitz J 《Molecular biology and evolution》2007,24(11):2573-2582
Armadillos, anteaters, and sloths (Order Xenarthra) comprise 1 of the 4 major clades of placental mammals. Isolated in South America from the other continental landmasses, xenarthrans diverged over a period of about 65 Myr, leaving more than 200 extinct genera and only 31 living species. The presence of both ancestral and highly derived anatomical features has made morphoanatomical analyses of the xenarthran evolutionary history difficult, and previous molecular analyses failed to resolve the relationships within armadillo subfamilies. We investigated the presence/absence patterns of retroposons from approximately 7,400 genomic loci, identifying 35 phylogenetically informative elements and an additional 39 informative rare genomic changes (RGCs). DAS-short interspersed elements (SINEs), previously described only in the Dasypus novemcinctus genome, were found in all living armadillo genera, including the previously unsampled Chlamyphorus, but were noticeably absent in sloths. The presence/absence patterns of the phylogenetically informative retroposed elements and other RGCs were then compared with data from the DNA sequences of the more than 12-kb flanking regions of these retroposons. Together, these data provide the first fully resolved genus tree of xenarthrans. Interestingly, multiple evidence supports the grouping of Chaetophractus and Zaedyus as a sister group to Euphractus within Euphractinae, an association that was not previously demonstrated. Also, flanking sequence analyses favor a close phylogenetic relationship between Cabassous and Tolypeutes within Tolypeutinae. Finally, the phylogenetic position of the subfamily Chlamyphorinae is resolved by the noncoding sequence data set as the sister group of Tolypeutinae. The data provide a stable phylogenetic framework for further evolutionary investigations of xenarthrans and important information for defining conservation priorities to save the diversity of one of the most curious groups of mammals. 相似文献
4.
Tardigrades are animals of small body size which is often regarded to be a secondary phenomenon. This interpretation makes sense in the traditional concept that tardigrades are closely related to Onychophora, Euarthropoda and Annelida. A large body size in the ancestor of this common taxon (Articulata) is probable. Small size and the absence of organs such as a dorsal heart, segmental coelomic cavities and metanephridia must then be interpreted as derived in tardigrades. However, when Cycloneuralia are taken as an outgroup instead of Annelida (taxon Ecdysozoa), an interpretation of small body size as a primary feature is plausible. This also accounts for the absence of heart, coelom and nephridia.The choice of outgroup influences hypotheses about sister-group relationships within Panarthropoda, with either Onychophora (Articulata-concept) or Tardigrada (Ecdysozoa-concept) being basal. 相似文献
5.
M. V. Sørensen M. B. Hebsgaard I. Heiner H. Glenner E. Willerslev R. M. Kristensen 《Journal of Zoological Systematics and Evolutionary Research》2008,46(3):231-239
Loricifera is one of the most recently discovered animal phyla. So far, the group has been considered closely related to Kinorhyncha and Priapulida, and assigned to the ecdysozoan clade Cycloneuralia. Using Bayesian inference, we present the first phylogeny that includes 18S rRNA and Histone 3 sequences from two species of Loricifera. Intriguingly, we find support for a sister-group relationship between Loricifera and Nematomorpha. Such relationship has not been suggested previously and the results imply that a revision of our conception of early ecdysozoan evolution is required. Additionally, the data suggest that evolution through progenesis (sexual maturation of larvae) may have played an important role among the ancestral cycloneuralians. 相似文献
6.
Telford MJ Bourlat SJ Economou A Papillon D Rota-Stabelli O 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1496):1529-1537
Ecdysozoa is a clade composed of eight phyla: the arthropods, tardigrades and onychophorans that share segmentation and appendages and the nematodes, nematomorphs, priapulids, kinorhynchs and loriciferans, which are worms with an anterior proboscis or introvert. Ecdysozoa contains the vast majority of animal species and there is a great diversity of body plans among both living and fossil members. The monophyly of the clade has been called into question by some workers based on analyses of whole genome datasets. We review the evidence that now conclusively supports the unique origin of these phyla. Relationships within Ecdysozoa are also controversial and we discuss the molecular and morphological evidence for a number of monophyletic groups within this superphylum. 相似文献
7.
Andreas Schmidt-Rhaesa Thomas Bartolomaeus Christian Lemburg Ulrich Ehlers James R. Garey 《Journal of morphology》1998,238(3):263-285
Traditionally, Panarthropoda (Euarthropoda, Onychophora, Tardigrada) are regarded as being closely related to Annelida in a taxon Articulata, but this is not supported by molecular analyses. Comparisons of gene sequences suggest that all molting taxa (Panarthropoda, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera) are related in a monophyletic taxon Ecdysozoa. An examination of the characters supporting Articulata reveals that only segmentation with a teloblastic segment formation and the existence of segmental coelomic cavities with nephridia support the Articulata, whereas all other characters are modified or reduced in the panarthropod lineage. Another set of characters is presented that supports the monophyly of Ecdysozoa: molting under influence of ecdysteroid hormones, loss of locomotory cilia, trilayered cuticle and the formation of the epicuticle from the tips of epidermal microvilli. Comparative morphology suggests Gastrotricha as the sister group of Ecdysozoa with the synapomorphies: triradiate muscular sucking pharynx and terminal mouth opening. Thus there are morphological characters that support Articulata, but molecular as well as morphological data advocate Ecdysozoa. Comparison of both hypotheses should prompt further thorough and targeted investigations. J. Morphol. 238:263–285, 1998. © 1998 Wiley-Liss, Inc. 相似文献
8.
ZRZAVÝ 《Journal of Zoological Systematics and Evolutionary Research》2001,39(3):159-163
The claim that monophyly of the Ecdysozoa is caused by chance similarities in 18S rDNA sequences ( Wägele et al., J. Zool. Syst. Evol. Res. 37, 211–223, 1999 ) is re-analysed from the cladistic point of view. It is shown that the molecular characters supporting the Ecdysozoa do not behave as 'noisy' in empirical studies that use the sensitivity analysis and character congruence approaches. The 'anti-noise' methodology proposed by Wägele et al. (1999) is unable to identify true misinformative data. The monophyly of the Articulata (= Annelida + Panarthropoda), proposed by Wägele et al. (1999) , is contradicted by all molecular data that support either Ecdysozoa (including Panarthropoda), or Lophotrochozoa (including Annelida), or usually both. 相似文献
9.
The decipherment of higher level relationships among the orders of Afrotheria – an extraordinary assumption in mammalian evolution – constitutes one of the major disputes in the evolutionary history of mammals. Recent comprehensive studies of various genomic data, including mitochondrial and nuclear DNA sequences, chromosomal syntenic associations and retroposon insertions support strongly the monophyly of Afrotheria. However, the relationships within Afrotheria have remained ambiguous and there is a necessity for a more sophisticated analysis (i.e. combination of gene phylogeny and Rare Genomic Changes (RGCs)), which could aid in the comprehension of the evolutionary history of this old group of mammals. The present study investigated the phylogenetic relationships within Afrotheria by analysing a data set of coding and non-coding sequences (~32 000 bp) comprising 57 orthologous genes and 31 RGCs, such as chromosomal associations and retroposon insertions, and re-evaluated a molecular timescale for afrotherian mammals using a Bayesian relaxed clock approach. The interordinal afrotherians phylogeny presented here contributed to the elucidation of the evolutionary history of this ancient clade of mammals, which is one of the most unorthodox proposals in mammalian biology. This is critical not only for understanding how Afrotheria evolved in Africa, but also to comprehend the early biogeographical history of placental mammals. 相似文献
10.
Phylogenetic dating is one of the most powerful and commonly used methods of drawing epidemiological interpretations from pathogen genomic data. Building such trees requires considering a molecular clock model which represents the rate at which substitutions accumulate on genomes. When the molecular clock rate is constant throughout the tree then the clock is said to be strict, but this is often not an acceptable assumption. Alternatively, relaxed clock models consider variations in the clock rate, often based on a distribution of rates for each branch. However, we show here that the distributions of rates across branches in commonly used relaxed clock models are incompatible with the biological expectation that the sum of the numbers of substitutions on two neighboring branches should be distributed as the substitution number on a single branch of equivalent length. We call this expectation the additivity property. We further show how assumptions of commonly used relaxed clock models can lead to estimates of evolutionary rates and dates with low precision and biased confidence intervals. We therefore propose a new additive relaxed clock model where the additivity property is satisfied. We illustrate the use of our new additive relaxed clock model on a range of simulated and real data sets, and we show that using this new model leads to more accurate estimates of mean evolutionary rates and ancestral dates. 相似文献
11.
Phylogenetic implications of the Crustacean nauplius 总被引:3,自引:1,他引:3
Hans-U. Dahms 《Hydrobiologia》2000,417(1):91-99
The plesiomorphic mode of crustacean development is widely accepted to be via a larva called the nauplius. Extant taxa like the Cephalocarida, Branchiopoda, Ostracoda, Mystacocarida, Copepoda, Cirripedia, Ascothoracida, Facetotecta, Euphausiacea and Penaeidea hatch from an egg as a free-living nauplius. Other crustaceans show an embryonic phase of development suggestive of a naupliar organization. Several features of the nauplius larva have been proposed as diagnostic characters for the Crustacea: a median (nauplius) eye; at least three pairs of head appendages (antennules, antennae, mandibles); a posteriorly directed fold (the labrum) extending over the mouth and a cephalic (nauplius) shield. The relationship between trilobite protaspis with at least four appendages and the crustacean nauplius remains unclear, but reports of a copepod orthonauplius with four appendages are rejected. Swimming is suggested to represent the underived mode of locomotion for the crustacean nauplius, and that naupliar swimming directly results in naupliar feeding which also is underived. 相似文献
12.
N. B. Petrov A. N. Pegova O. G. Manylov N. S. Vladychenskaya N. S. Mugue V. V. Aleshin 《Molecular Biology》2007,41(3):445-452
Gastrotricha are the small meiobenthic acoelomate worms whose phylogenetic relationships between themselves and other invertebrates remain unclear, despite all attempts to clarify them on the basis of both morphological and molecular analyses. The complete sequences of the 18S rRNA genes (8 new and 7 known) were analyzed in 15 Gastrotricha species to test different hypotheses on the phylogeny of this taxon and to determine the reasons for the contradictions in earlier results. The data were analyzed using both maximum likelihood and Bayesian methods. Based on the results, it was assumed that gastrotrichs form a monophyletic group within the Spiralia clade, which also includes Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea, and Lophotrochozoa. Statistical tests rejected a phylogenetic hypotheses considering Gastrotricha to be closely related to Nematoda and other Ecdysozoa or placing them at the base of the Bilateria tree, close to Acoela or Nemertodermatida. Among gastrotrichs, species belonging to the orders Chaetonotida and Macrodasyida form two well-supported clades. The analysis confirmed monophyly of the families Chaetonotidae and Xenotrichulidae from the order Chaetonida, as well as the families Turbanellidae and Thaumastodermatidae from the order Macrodasyida. Lepidodasyidae is a polyphyletic family, because the genus Mesodasys forms a sister group for Turbanellidae; genus Cephalodasys forms a separate branch at the base of Macrodasyida; and Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To confirm these conclusions and to get an authentic view of the phylogeny of Gastrotricha, it is necessary to study more Gastrotricha species and to analyze some other genes. 相似文献
13.
Mark N. Puttick 《Biology letters》2016,12(8)
Ancestral state reconstruction of discrete character traits is often vital when attempting to understand the origins and homology of traits in living species. The addition of fossils has been shown to alter our understanding of trait evolution in extant taxa, but researchers may avoid using fossils alongside extant species if only few are known, or if the designation of the trait of interest is uncertain. Here, I investigate the impacts of fossils and incorrectly coded fossils in the ancestral state reconstruction of discrete morphological characters under a likelihood model. Under simulated phylogenies and data, likelihood-based models are generally accurate when estimating ancestral node values. Analyses with combined fossil and extant data always outperform analyses with extant species alone, even when around one quarter of the fossil information is incorrect. These results are especially pronounced when model assumptions are violated, such as when there is a trend away from the root value. Fossil data are of particular importance when attempting to estimate the root node character state. Attempts should be made to include fossils in analysis of discrete traits under likelihood, even if there is uncertainty in the fossil trait data. 相似文献
14.
Phylogenetic relationships within the group of molting protostomes were reconstructed by comparing the sets of 18S and 28S rRNA gene sequences considered either separately or in combination. The reliability of reconstructions was estimated from the bootstrap indices for major phylogenetic tree nodes and from the degree of congruence of phylogenetic trees obtained by different methods. By either criterion, the phylogenetic trees reconstructed on the basis of both 18 and 28S rRNA gene sequences were better than those based on the 18S or 28S sequences alone. The results of reconstruction are consistent with the phylogenetic hypothesis classifying protostomes into two major clades: molting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, and Crustacea + Hexapoda) and nonmolting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, and Sipuncula). Nematomorphs (Nematomorpha) do not belong to the clade Cephalorhyncha (Priapulida + Kinorhyncha). It is concluded that combined data on the 18S and 28S rRNA gene sequences provide a more reliable basis for phylogenetic inferences.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 590–601.Original Russian Text Copyright © 2005 by Petrov, Vladychenskaya. 相似文献
15.
Roeding F Hagner-Holler S Ruhberg H Ebersberger I von Haeseler A Kube M Reinhardt R Burmester T 《Molecular phylogenetics and evolution》2007,45(3):942-951
Onychophora (velvet worms) represent a small animal taxon considered to be related to Euarthropoda. We have obtained 1873 5' cDNA sequences (expressed sequence tags, ESTs) from the velvet worm Epiperipatus sp., which were assembled into 833 contigs. BLAST similarity searches revealed that 51.9% of the contigs had matches in the protein databases with expectation values lower than 10(-4). Most ESTs had the best hit with proteins from either Chordata or Arthropoda (approximately 40% respectively). The ESTs included sequences of 27 ribosomal proteins. The orthologous sequences from 28 other species of a broad range of phyla were obtained from the databases, including other EST projects. A concatenated amino acid alignment comprising 5021 positions was constructed, which covers 4259 positions when problematic regions were removed. Bayesian and maximum likelihood methods place Epiperipatus within the monophyletic Ecdysozoa (Onychophora, Arthropoda, Tardigrada and Nematoda), but its exact relation to the Euarthropoda remained unresolved. The "Articulata" concept was not supported. Tardigrada and Nematoda formed a well-supported monophylum, suggesting that Tardigrada are actually Cycloneuralia. In agreement with previous studies, we have demonstrated that random sequencing of cDNAs results in sequence information suitable for phylogenomic approaches to resolve metazoan relationships. 相似文献
16.
HELEN ALIPANAH CEES GIELIS ALIREZA SARI ALIMORAD SARAFRAZI SHAHAB MANZARI 《Zoological Journal of the Linnean Society》2011,163(2):484-547
The monophyly of the tribe Oxyptilini and phylogenetic relationships of the genera embraced in this tribe were examined using 171 (75 binary and 96 multistate) characters of adult morphology. The study material included 98 species of 30 genera, representing all previously recognized genera of Oxyptilini, together with the genera Sphenarches, Antarches, Diacrotricha, and Cosmoclostis, four species of Oidaematophorini, three species of Platyptiliini, as well as three and two other species belonging to Pterophorini and Exelastini respectively. Two Agdistis species were used as outgroups. The cladistic analysis resulted in six equally parsimonious trees. A majority of the recovered synapomorphic characters have previously been used in the taxonomy of the subfamily. However, 25 novel characters were found. The monophyly of Oxyptilini was supported, although only with homoplastic characters and low amounts of tree confidence; the genera Capperia, Procapperia, Paracapperia, Oxyptilus, Megalorhipida, and Trichoptilus were found to be nonmonophyletic; Sphenarches and Antarches were recovered as members of Oxyptilini; the two genera Cosmoclostis and Diacrotricha were placed out of Oxyptilini, inside the tribe Pterophorini; and close affinity of the genus Dejongia to Stangeia, Stenodacma, Megalorhipida, Trichoptilus, and Buckleria species was revealed. Four new combinations, Cosmoclostis lanceata (Arenberger) comb. nov. , Nippoptilia regulus (Meyrick) comb. nov. , Capperia tadzhica (Zagulajev) comb. nov. , and Buckleria negotiosus (Meyrick) comb. nov. are proposed; Capperia insomnis Townsend was considered as a senior synonym of Procapperia hackeri Arenberger syn. nov. , Buckleria negotiosus (Meyrick) as a senior synonym of Buckleria vanderwolfi Gielis syn. nov. , and Oxyptilus variegatus Meyrick syn. nov. as a junior synonym of Oxyptilus secutor Meyrick. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 484–547. 相似文献
17.
PER CHRISTIANSEN 《Zoological Journal of the Linnean Society》2007,149(3):423-436
Limb-bone allometry was investigated for 19 species of proboscideans, spanning almost the entire phylogenetic spectrum. More archaic proboscideans ('gompthotheres') have substantially thicker long-bone diaphyses relative to length than elephantids, as has been suggested previously, but contrary to previous suggestions it could not be confirmed that Mammuthus had more massive long-bone diaphyses on average than extant Elephas and Loxodonta . When correcting for phylogeny, the circumference of the limb bones to their length in proboscideans as a group generally scale with negative allometry, becoming stouter with increased length, as would be expected from limb mechanics. Few slopes were, however, statistically significantly negatively allometric. Correcting for phylogeny produced better correlations than traditional regression analyses, in contrast to most other studies where the reverse is the case. Intraspecific analyses of extant Elephas and Loxodonta , in addition to Mammuthus primigenius , Mammut americanum, and Gomphotherium productum , also resulted in negatively allometric regression slopes, frequently conforming to the theory of elastic similarity, as could be expected from the columnar posture of proboscideans. At present the reasons for the more massive limbs of gomphotheres s.l. are not fully understood. © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 149 , 423–436. 相似文献
18.
Wu‐Qin Xu Jocelyn Losh Chuan Chen Pan Li Rui‐Hong Wang Yun‐Peng Zhao Ying‐Xiong Qiu Cheng‐Xin Fu 《植物分类学报:英文版》2019,57(1):55-65
The figwort genus Scrophularia L. (Scrophulariaceae) comprises 200–300 species and is widespread throughout the temperate Northern Hemisphere. Due to reticulate evolution resulting from hybridization and polyploidization, the taxonomy and phylogeny of Scrophularia is notoriously challenging. Here we report the complete chloroplast (cp) genome sequences of S. henryi Hemsl. and S. dentata Royle ex Benth. and compare them with those of S. takesimensis Nakai and S. buergeriana Miq. The Scrophularia cp genomes ranged from 152 425 to 153 631 bp in length. Each cp genome contained 113 unigenes, consisting of 78 protein‐coding genes, 31 transfer RNA genes, and 4 ribosomal RNA genes. Gene order, gene content, AT content and IR/SC boundary structure were nearly identical among them. Nine cpDNA markers (trnH‐psbA, rps15, rps18‐rpl20, rpl32‐trnL, trnS‐trnG, ycf15‐trnL, rps4‐trnT, ndhF‐rpl32, and rps16‐trnQ) with more than 2% variable sites were identified. Our phylogenetic analyses including 55 genera from Lamiales strongly supported a sister relationship between ((Bignoniaceae + Verbenaceae) + Pedaliaceae) and (Acanthaceae + Lentibulariaceae). Within Scrophulariaceae, a topology of (S. dentata+ (S. takesimensis+ (S. buergeriana+S. henryi))) was strongly supported. The crown age of Lamiales was estimated to be 85.1 Ma (95% highest posterior density, 70.6–99.8 Ma). The higher core Lamiales originated at 65.6 Ma (95% highest posterior density, 51.4–79.4 Ma), with a subsequent radiation that occurred in the Paleocene (between 55.4 and 62.3 Ma) and gave birth to the diversified families. Our study provides a robust phylogeny and a temporal framework for further investigation of the evolution of Lamiales. 相似文献
19.
长非编码RNA(lnc RNA)是长度大于200 bp的一类非编码蛋白的RNA,因其在基因组中含量巨大以及重要的生物学功能引起了学术界的广泛关注.基因组印记是一种表观遗传现象,lnc RNAs通过建立靶基因的印记而发挥重要的生物功能.基因组印记可以用来研究lnc RNAs在转录和转录后水平调控基因表达的分子机制.本文选取6个印记机制研究比较透彻的印记区域,包括Kcnq1/Cdkn1c、Igf2r/Airn、Prader-Willi(PWS)/Angelman(AS)、Snurf/Snrpn、Dlk1-Dio3和H19/Igf2.通过介绍包括基因间lnc RNAs(H19、Ipw和Meg3)、反义lnc RNAs(Kcnq1ot1、Airn、Ube3a-ATS)和增强子lnc RNAs(IG-DMR e RNAs)在内的3种类型lnc RNAs在印记调控中的作用,从而了解lnc RNAs通过顺式或(/和)反式作用多种机制调控亲本特异性靶基因的表达.了解印记基因簇中lnc RNAs的作用方式将有助于我们揭示lnc RNAs在整个基因组中的作用机制. 相似文献
20.
Hawks J 《American journal of physical anthropology》2004,125(3):207-219
Although cladistic analysis has been used to compare hypotheses of relationships among early hominids, the outcomes of different studies have depended entirely on the assumptions made by different investigators. Problems include the close genetic relationship of early hominid taxa, small fossil sample sizes, possible correlations among characters, and a lack of understanding about the evolutionary factors affecting characters. This study investigates the interaction of some of these problems affecting early hominid phylogenetics. Monte Carlo simulations of character state evolution in closely related taxa demonstrate that the sample sizes and close genetic relationships of early hominids do not permit cladistic analyses to obtain unequivocal results. Even with unrealistically good assumptions about the evolutionary dynamics affecting characters, the probability of the most parsimonious hypothesis being true is unacceptably small. In the face of these problems, even phylogenetic statements that are supported by a strong consensus of cladistic studies may nevertheless be in error, and such errors are likely to confound the placement of new specimens and taxa. Advancement in our knowledge of hominid phylogeny can depend only on a fuller understanding of the natural history and evolutionary dynamics of traits. 相似文献